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Abstract

In recent years, non-Gaussian entangled states of light have gained much importance in var-

ious information processing tasks. In this thesis, we have investigated various information

theoretic aspects of a class of two-mode non-Gaussian entangled resources that are gener-

ated by a beam splitter (BS) from input single mode non-Gaussian states, termed MNIO

states, arising from two distinct nonclassicality (NC) inducing operations, namely, pho-

ton addition/subtraction and squeezing. An interesting aspect of the MNIO states is the

presence and/or absence of the squeezing sub-Poissonian character in different parameter

regimes. We have shown how various quantitative features of BS generated entanglement,

with MNIO states, can be understood in terms of the competition between the different NC-

inducing operations, as manifest in the contours of the associated Q distributions. We ex-

plain this quantitative features in terms of a Wehrl entropy based measure of NC, as we find

the existing measures to be inadequate in this respect. We have investigated aspects of quan-

tum teleportation (QT) with the BS generated non-Gaussian entangled resource states. Our

focus has been to assess whether attributes of entangled resource states such as squeezed

vacuum affinity and EPR correlation are necessary/sufficient for QT. Our results suggest

that these are neither necessary nor sufficient. We have looked into yet another attribute

not considered earlier, namely, U (2)-invariant two-mode squeezing in this context. Our nu-

merical studies on both the de-Gaussified squeezed vacuum states studied earlier as well as

the BS generated states point us to the conclusion that U (2)-invariant two-mode squeezing

could be a necessary condition for QT. We have examined which particular aspect of NC,

viz., the squeezing or the sub-Poissonian character, contributes more towards conversion of

input NC into BS output entanglement. Finally, we have addressed the question of how to

regenerate the entanglement destroyed by the first BS when two other BSs are placed at the

two output ports. We have given a scheme using BSs and other linear optical elements that

accomplishes this task. Our scheme also accomplishes the task of regenerating entangle-

ment at various sites on a 1-dimensional lattice.





Key Results of the Thesis

Chapter 2

• While in the case of input MNIO states, the BS generated entanglement shows mono-

tonic dependence on input NC as quantified by the photon addition number m and

squeeze parameter r generally, in the particular case of PAS, it turns out a non-monotonic

dependence.

• We explain this non-monotonicity in terms of the relative competition between the

NC-inducing operations of photon addition and squeezing as manifest in the contours

of the associated Husimi-Kano Q distribution.

• Attempts to quantify the NC of the MNIO class of states in terms of the existing mea-

sures of NC fail, as these measures are not well defined for these states.

Chapter 3

• We propose a new measure of NC for the pure states in terms of the Wehrl entropy.

• Our measure gives a correct quantification of the effective NC of the MNIO class of

states. Further the dependence of the Wehrl entropy based NC measure on the input

state parameters is consistent with that of the BS entanglement curves.

Chapter 4

• Squeezed vacuum affinity regarded as an essential attribute of two-mode entangled

resource states in the literature turn out to be zero for a large subclass of BS-MNIO

states, and hence is not a genuine attribute in general.

• EPR correlation, another such attribute considered in the literature, is found not be

sufficient for QT. Our results together with other specific results known in the litera-

ture, indicate that EPR correlation is neither necessary nor sufficient for QT.



x

• We further examine the question of whether U (2)-invariant squeezing of two-mode

entangled states could be a necessary condition for QT and our extensive numerical

results point us to the conclusion that this could well be true.

Chapter 5

• We have found that the sub-Poissonian character of the input states contributes to the

larger extent towards conversion of input NC into BS output entanglement in compar-

ison with the squeezing character.

• A scheme, using multiple BSs and other linear optical elements, has been proposed

for regenerating and redistributing BS output entanglement originally generated and

destroyed at the site of the first BS.
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Introduction

Quantum entanglement is at the heart of a new discipline that has emerged in the last

decades, called Quantum Information Science. The first conceptualization of quantum en-

tanglement was given by Einstein, Podolsky and Rosen [1] where they talked about the

spooky action at a distance between two spatially separated particles with correlated po-

sitions and momenta. This spooky action at a distance was first termed as entanglement by

Schrodinger [2]. Quantum Information Science encompasses several sub-disciplines includ-

ing quantum information theory, quantum information processing, quantum computation

etc. Entanglement plays a central role in several information processing tasks such as quan-

tum teleportation, dense coding, quantum cryptography etc. [3]. In last decades, the theory

of entanglement as well as the characterization of different entanglement based information

theoretic protocols have been explored to a great extent, both on theoretical and experimen-

tal grounds [4]. Various theoretical issues such as characterization and quantification of

entanglement, and the use of entanglement in information processing tasks, and experi-

mental issues relating to realization of qubits, quantum gates, various protocols have been

explored.

While classical information is stored in bits, quantum information is stored in qubits

which are essentially any quantum two state system. Qubits can be realized in several phys-

ical systems such as atomic or nuclear spin, two-lowest energy levels of a semiconductor

quantum dots, polarization degrees of a single photon etc. More generally, quantum infor-

mation can be stored in qudits which are states in a d-dimensional Hilbert space. In case

of qubits, d = 2. Alternatively, one may store quantum information in continuous variables

such as position and momentum of a particle or the quadrature variables of a single mode

quantized electromagnetic field or the vibrational modes of molecules or solids etc. The in-

formation storage unit here are states that live in an infinite dimensional Hilbert space [5].

Continuous variable QIT with optical resources is centered largely around Gaussian

states [6, 7]. This is due the fact that Gaussian states could be well-characterized in terms
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of a real symmetric matrix of all second order moments [8, 9], known as the variance ma-

trix. The Gaussian entangled states generated typically in various non-linear optical ex-

periments [10] have been extensively studied in several information processing tasks, both

theoretically and experimentally [11]. However, in recent years, non-Gaussian entangled

resources, generated by several de-Gaussification processes applied on two-mode entangled

Gaussian states, have been found to be useful due to their superiority over Gaussian states

in different information processing tasks [12].

An alternative way of generating such non-Gaussian entangled states of light is by using

linear devices like a passive beam splitter (BS). A necessary and sufficient condition [13–16]

for the BS output state to be entangled is that light fed at one of the input ports of a BS with

other port left with vacuum, is nonclassical [18–20]. The quantitative aspect of BS output

entanglement with input nonclassical states has attracted some attention in the literature.

Earlier studies on BS generated entanglement have used as input states, the squeezed vac-

uum, squeezed thermal or the photon number state. They have found a monotonic relation

between BS output entanglement and input NC as measured by the squeezed parameter r

or the photo number m as the case may be.

My thesis is dedicated to an extensive analysis of the various information theoretic aspects

of a class of two-mode non-Gaussian entangled states light, generated by a BS from input

single mode nonclassical non-Gaussian states. These states have been studied in the liter-

ature in respect of their nonclassical properties, photon number distributions etc. [21–25].

However, we find it useful to look upon these states as a class of states generated under

two distinct nonclassicality (NC) inducing operations, namely photon addition/subtraction

and quadrature squeezing, applied on the vacuum state in different orders. The particular

single mode states that we have considered are photon added squeezed vacuum state (PAS),

photon subtracted squeezed vacuum state (PSS) and squeezed number state (SNS). More

generally, one could conceive of states generated under multiple nonclassicality inducing op-

erations (MNIO). From this perspective it is convenient to refer to the states PAS, PSS and

SNS as belonging to the "MNIO class". The two-mode entangled states generated by the BS

with input MNIO states we have conveniently termed as the BS-MNIO states. The outline

of the thesis is as given below.

In Chapter 1 we have briefly discussed some basic concepts related to the single mode

and two-mode quantum optical states. In particular, we have first reviewed various aspects

of these states such as NC and non-Gaussianity (NG). Both NC as well as NG are defined

in terms of appropriate phase space distributions associated with these states. Hence we
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have given a brief description of phase space distributions and some of their important

properties. We have also discussed the basic notion of quantum entanglement, ways to

characterize it and measure it. Finally, we have briefly discussed the Braunstein-Kimble

(BK) protocol for quantum teleportation (QT) using entangled optical resources.

In Chapter 2 we have carried out an extensive analysis regarding the different nonclas-

sical aspects of the MNIO class of states and the BS output entanglement with such states

at input. to begin with, we have brought out some interesting nonclassical features of these

states in terms of the presence and/or absence of sub-Poissonian and squeezing character, in

different parameter regimes. The main thrust of this chapter is the study of quantitative and

qualitative aspects of BS generated entanglement, with MNIO states at input, in relation to

the amount of NC in the input states. The BS output entanglement in the case of SNS as

input is found to be a monotonic function of the input NC as measured by the input state

parameters, viz., number of photon addition (m) and the squeeze parameter (r), in line with

the earlier results obtained with either of number state or squeezed vacuum state. However,

in the case of PAS as input, the BS output entanglement shows a non-monotonic dependence.

We have sought to understand this counterintuitive result in terms of an effective NC mea-

sure of the states SNS and PAS, relying on existing measures. However, we have found that

the existing measures are not even well defined for the MNIO class of states. However,

we have qualitatively explained this non-monotonic behavior in terms of the mutual competi-

tion between the NC-inducing operations, i.e., photon addition and quadrature squeezing, as

manifest in the contours of the associated Husimi-Kano Q distributions.

In Chapter 3, we have returned to the question of how to explain quantitatively the

non-monotonicity in the BS generated entanglement, with input MNIO class of states, as is

observed in Chap. 2, in terms of an effective measure of input NC. To this end, we have

proposed propose a new measure of single mode NC for pure states in terms of the Wehrl

entropy. We have demonstrated that our newly proposed measure reproduces the NC curves

for the MNIO class of states, consistent with that of the respective BS generated entangle-

ment curves. We have also shown that our Wehrl entropy based measure is a monotonically

increasing function of a well-known measure of NC known as nonclassical depth, in the spe-

cial case of Gaussian states. This measure, however, can’t be extended to the mixed states.

In Chapter 4 we have studied quantitative and qualitative aspects of QT, using the BK

protocol with the BS-MNIO states as entangled resources. The primary objective of our

study has been to identify what are, besides entanglement, the necessary and/or sufficient

conditions on the two-mode entangled states to achieve QT. To this end, we have first in-
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vestigated the existing well-known attributes of the two-mode entangled resources such as

squeezed vacuum affinity (SVA) and EPR correlation. Our results indicate that while SVA is

not a genuine attribute of the two-mode entangled resource states, as it is not non-zero for

a large subclass of the BS-MNIO states, EPR correlation is not sufficient for QT. In conjunc-

tion with the earlier work by Lee et. al. [Phys. Rev. A 84, 012302 (2011)] and Wang et.

al. [Phys. Rev. A 91, 063832 (2015)], where the EPR correlation has been found not to be

always necessary for QT, our work leads us to the conclusion that EPR correlation is neither

necessary nor sufficient for QT, in general. We then have gone into the question of whether

U (2)-invariant two-mode squeezing could be relevant for QT. Our numerical results on the

BS-MNIO states as well as the de-Gaussified TMSV indicate that QT is achieved only when

U (2)-invariant squeezing is present. However, the converse is not true. In other words, for

the class of states that we have considered,U (2)-invariant squeezing appears to be necessary

for QT, but not sufficient. We have provided an analytical proof of this necessary criterion in

the case of a subclass of two-mode entangled Gaussian states, namely the symmetric Gaus-

sian states. Our overall conclusion based on our numerical results as well as some limited

analytical results is that U (2)-invariant squeezing could be a necessary condition for QT, in

general.

In Chapter 5 we have revisited the question of the extent to which input NC is converted

into BS output entanglement that was studied earlier by Ge et. al. [Phys. Rev. A 92, 052328

(2015)]. Our results corroborate the conservation law relating input NC, output NC and

BS output entanglement. We have looked into the question of conversion of input NC into

BS output entanglement in the non-Gaussian case by focussing on two particular aspects of

NC, viz., sub-Poissonian and quadrature squeezing character. We have shown analytically

that, compared to the squeezing character, sub-Poissonian character is used up by the BS to

greater extent for generating entanglement. Finally, we address the question of regenerating

the entanglement destroyed due to the placement of two other BSs at the output ports of the

first BS, at some different location. In this regard we have proposed a scheme, using BSs

and other linear optical elements such as phase shifter and perfect mirrors, to accomplish

this task. We have further demonstrated that our scheme also accomplishes the task of

redistributing the BS generated entanglement at different sites on a 1-dimensional lattice.

In Chapter 6 we have summarized the various results obtained in the thesis. We have also

indicated in what ways some of these results could be extended in future works. We have

also discussed the possibility of examining some of the questions addressed in the thesis in

the context of classical optical beams which, as is well known, are analogous to two-mode
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quantum states under paraxial approximation.





Chapter 1
Background

In this chapter we briefly discuss important characteristics of quantum states of light such

as nonclassicality (NC) and non-Gaussianity (NG) of quantum states of light and related lit-

erature. We also describe the of generation of two-mode entanglement from the nonclassical

states of light and quantum teleportation with entangled optical resources.

1.1 Phase Space Distributions in Quantum Optics

The expectation value of an operator Â for the quantum state ρ is given by 〈Â〉 = Tr [Âρ].

For the first time E. P. Wigner [26] suggested how one can calculate 〈Â〉 as the average value

of the classical function Acl(x,p) associated with the operator Â with respect to the phase

space probability distribution Wρ(x,p), called the Wigner distribution, associated with the

quantum state ρ.

There are several such phase space distributions [27]. Here, we discuss some of the

distributions that are commonly used in quantum optics, viz., Wigner (W ) distribution [26],

Glauber-Sudarshan (P ) distribution [28] and Husimi-Kano (Q) distribution [29]. For any

quantum state of light ρ, these distributions are defined as,

W (α,α∗) =
∫
d2λ
π

eαλ
∗−α∗λ Tr [ρ eλa†−λ∗a]

P (α,α∗) =
∫
d2λ
π

eαλ
∗−α∗λ Tr [ρ eλa† e−λ

∗a]

Q(α,α∗) =
∫
d2λ
π

eαλ
∗−α∗λ Tr [ρ e−λ

∗a eλa†], (1.1)

where, a and a† are the single mode annihilation and creation operators respectively. The

complex numbers {α,α∗} are the phase space C-number analogues of the ladder operators a

and a† related to the real quadrature variables ({x,p}) as α = 1√
2
(x + ip) and α∗ = 1√

2
(x − ip).

Note that the phase space distributions W , P and Q in Eq. (1.1) are in fact special cases of
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the family of s-ordered distributions [27, 30] as,

F(α,α∗) =
∫
d2λ
π

eαλ
∗−α∗λ es

|λ|2
2 Tr [ρ D(α)], (1.2)

where,D(α) = eλa
†−λ∗a. One obtainsW , P andQ distributions for s = 0,1 and −1 respectively.

A detailed description of these phase-space distributions in quantum optics could be found

in [27, 31].

It is worth noting that these phase space distributions are not true classical probability

distributions as they fail to satisfy some of the requirements on the latter for example the

Wigner distribution is not always non-negative whereas the P distribution can become more

singular than a delta function for some states. Hence these phase space distributions are

referred to as quasi-probability distribution.

1.2 Nonclassical States of Light

Any quantum state of light ρ could be represented in terms of P distribution as

ρ =
∫
d2α
π

P (α,α∗) |α〉〈α|, (1.3)

where |α〉 is the coherent state basis. The state ρ is said to nonclassical if its associated P

distribution as defined in Eq. (1.3) becomes negative or more singular than a delta function

[32]. For the sake of illustration let’s consider the photon number state |m〉 (ρ = |m〉〈m|) for

which Glauber-Sudarshan P distribution is given by

P |m〉 (α,α∗) =
∂2m

∂mα ∂
m
α∗
δ2(α), (1.4)

where δ2(α) is the delta function δ(Re α) δ(Im α). Clearly, the P distribution being given by

higher derivatives of the delta function is more singular than the delta function. Another

simple example is that of the squeezed vacuum sate
∣∣∣ψsv

〉
= S(r) |0〉, S(r) = exp [ r2(a†2−a2)].

The uncertainty in the quadrature operator X = 1
i
√

2
(a − a†), V (X) = ∆X = 〈X2〉 − 〈X〉2

in the state
∣∣∣ψsv

〉
is given by ∆X = 1

2 e
−2r , whereas in the vacuum state |0〉, ∆X = 1

2 . More

generally, a squeezed state is defined as one of which ∆Xφ < 1
2 where ∆Xφ is the quadrature

variable ∆Xφ = 1√
2

(aeiφ + a†e−iφ). The condition that in any state ρ, ∆Xφ < 1
2 , when

expressed in terms of the P distribution leads to the condition P < 0 [10]. Thus, the photon

number state and a squeezed state are examples of nonclassical states.

In general, a classical state [36] can becomes nonclassical under operations such as photon

excitation [37], quadrature squeezing [38], amplitude squeezing [39] etc.
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1.2.1 Signatures of Nonclassicality

It is not always possible to evaluate P distribution for a given state to check it it is a true

probability distribution or not to determine if ρ is nonclassical or not. Hence one would like

to detect the nonclassical character of the single mode quantum states of light by checking

if some inequalities involving lower order moments of the mode operators are violated or

not. To this end one defines NC of states in terms of attributes such as sub-Poissonian

photon statistics, quadrature squeezing etc. It is well-known that a coherent state |α〉 has a

Poissonian photon number distribution, P|α〉(n) = e−|α|
2 ∑

n
(|α|2)n

n! with variance in photon

number 〈(∆N )2〉 being equal to the mean photon number 〈N 〉, whereN = a†a is the photon

number operator. If for any state ρ, 〈(∆ N )2〉 becomes less than 〈N 〉, the corresponding

photon number distribution P (n) becomes sub-Poisson and the state is said to possess sub-

Poissonian character. This is characterized in terms of the Mandel Q parameter given by

Q =
〈(∆ N )2〉
〈N 〉

− 1 =
〈N 2〉 − 〈N 〉2

〈N 〉
− 1. (1.5)

Note thatQ being negative indicates that the photon number distribution is sub-Poissonian.

More negative Q is more sub-Poissonian the state is. In the case of the photon number state

|m〉, Q is identically equal to −1, since 〈(∆ N )2〉 is zero. Hence the NC of the photon num-

ber state |m〉 is detected by its sub-Poissonian character. As we have already noted in the

previous subsection, if a state ρ is squeezed the P distribution is not a true probability dis-

tribution and hence is nonclassical. Thus, squeezing is another signature of NC.

However, in general, NC of quantum optical states may show several signatures, such as

sub-Poissonian statistics [40], oscillatory number distribution [41], nonclassical relation between

moments of the photon number operator [42] etc. A comprehensive review on the nonclassical

states of light is given in [43–45].

1.2.2 Measures of Nonclassicality

Let’s first consider the cases of |m〉 and
∣∣∣ψsv

〉
. In the case of |m〉, with increase in m, P

distribution becomes more singular than the delta function (Eq. 1.4). As a consequence,

one might consider the value of m as a measure of the nonclassical character of |m〉. On the

other hand, in the case of
∣∣∣ψsv

〉
, as we have noted before V (X) = 1

2 e
−2r ≤ 1

2 (i.e., r ≥ 0)

implies P (α) < 0 and hence the state
∣∣∣ψsv

〉
is nonclassical. In fact as r increases P (α) becomes

more negative and hence more nonclassical the state becomes. Hence r can be taken to be a

measure of NC of the state
∣∣∣ψsv

〉
.

However, in case of quantum optical states, in general, one requires a measure of NC
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that doesn’t refer explicitly to state parameters. There have been several proposals for the

quantification of NC of single mode quantum states of light [46–52]. While some of them

are defined in terms of the distance from the nearest classical states [46,47] in Hilbert space,

others are described in terms of certain properties of the associated phase-space distribu-

tions [48–50]. Measure of NC have been proposed also in terms of negativity in normal

ordered operators [51] as well as quantum superpositions [52]. We shall describe a few

commonly used measures in the following.

A. Trace Norm Distance from Nearest Classical State

Trace norm of an operator A is defined as ||A||1 = Tr [|A|] = Tr [
√

A†A], i.e., the sum of

the singular values of A. In terms of the trace norm, NC of any quantum state of light ρ is

defined as [46],

δ(ρ) = inf
σ
||ρ − σ ||1, (1.6)

where the infimum is taken over the set of all classical states σ . It is worth noting that for

all pure states of light, ρ =
∣∣∣ψ〉〈

ψ
∣∣∣, the minimal trace norm distance from the classical state

is independent of the choice of classical reference state and is given by

δ(
∣∣∣ψ〉

) ≥ [1 − sup
β

Q|ψ〉(β,β
∗)]. (1.7)

where Q|ψ〉(β,β
∗) is the Husimi-Kano Q distribution of

∣∣∣ψ〉
. However, in the case of mixed

states, it depends on the choice of reference state and thus one has to minimize over the

set of all classical states. Note that in the case of |m〉 as well as
∣∣∣ψsv

〉
, nonclassical distance

increases with both number of photon addition (m) as well as squeezing strength (r) [46].

B. Hilbert-Schmidt Distance from Nearest Classical State

Similar to the trace norm distance NC (Eq. 1.6), this measure is defined as the Hilbert-

Schmidt distance of a given density operator ρ from the nearest classical state [47] as,

dNC(ρ) = inf
σ

√
Tr [(ρ − σ )2], (1.8)

where the infimum is taken over set of all classical states σ . Again as in the case of trace

norm distance, it can be shown that the minimal Hilbert-Schmidt distance based NC of a

nonclassical pure state, ρ =
∣∣∣ψ〉〈

ψ
∣∣∣, is independent of the choice of classical reference and

is given by

dNC(
∣∣∣ψ〉

) = inf
β

√
2 [1 − |〈β|ψ〉|2]1/2 =

√
2 [1 − sup

β
Q|ψ〉(β,β

∗)]1/2, (1.9)
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where,Q|ψ〉(β,β
∗) is the Husimi-KanoQ distribution of

∣∣∣ψ〉
. It may be noted that, in general,

the trace norm and Hilbert-Schmidt norm are the special cases of Schatten p norm defined

as,

||A||p = (Tr [|A|p])1/p, (1.10)

where, p = 1 and 2 corresponds to trace norm and Hilbert-Schmidt norm respectively.

C. Nonclassical Depth

As we have mentioned earlier nonclassical states of light are defined as those for which

The associated P distribution is not a true probability distribution. On the other hand,

the Husimi-Kano Q distribution associated with any state is a well-defined positive semi-

definite regular distribution. The Q distribution is related to the P distribution by a Gaus-

sian convolution,

Q(z,z∗) =
∫
d2ω
π

e − |z−ω|
2
P (ω,ω∗). (1.11)

The Kernel of the convolution, e − |z−ω|
2
, is the Wigner distribution corresponding to the

vacuum state. In the spirit of the transformation in Eq. (1.11), one can, in general, define an

η convoluted P distribution as

R(z,η) =
1
η

∫
d2ω
π

e−
|z−ω|2
η P (ω,ω∗), (1.12)

where η is bounded above by unity as 0 ≤ η < 1. Accordingly, one can define as measure

of NC of any optical state ρ, as the minimum value of η needed to make R(z,η) a positive

semidefinite regular function [48]. This minimum value ηmin, is said to be the nonclassical

depth of ρ. This depth can be interpreted as the minimal smoothing needed to wash out the

negativity (and singularity) of Glauber-Sudarshan P distribution.

However, in the case of pure states with non-Gaussian Wigner distribution, for any

0 ≤ η < 1, the positive semi-definiteness of R(z,η) can’t be ensured. In such cases, the

nonclassical depth is taken to be unity [48] as in that case, i.e. with η = 1 one retrieves

Q distribution which a well-behaved distribution. Thus, the concept of nonclassical depth

can’t be applied to the non-Gaussian pure states as it declares all non-Gaussian pure states

as being equally nonclassical [53].

D. Wigner Negativity

It is well known that the Wigner distribution Wρ(z,z∗) of any state of light ρ, being negative

in phase space indicates that the state ρ is nonclassical. Hence it has been proposed that

the phase space integral of the negative part of the Wigner function, called the Wigner
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negativity, defined by

δw =

∫
d2z
π |Wρ(z,z∗)| − 1

2
, (1.13)

may be regarded as a measure of NC [49]. A larger δw implies that the Wigner distribution

spans a larger volume in phase space and hence state is more nonclassical. For example, in

the case of photon number state |m〉, δw increases monotonically with increase in the photon

number m [49]. Clearly, this measure is not applicable to states whose Wigner distribution

is Gaussian and hence always positive.

1.3 Gaussian and Non-Gaussian States of Light

Several non-linear optical processes such as second harmonic generation, four wave mixing

etc. [10] are described by effective Hamiltonian that are quadratic in the mode operators. The

states generated under evolution generated by quadratic Hamiltonian are characterized by

Gaussian Wigner distribution. Any quantum optical state for which the Wigner distribution

is Gaussian is said to be a Gaussian state, otherwise a non-Gaussian state. A well known

result is that any single mode Gaussian state (ρG) can be expressed as a displaced squeezed

thermal state [54], i.e.,

ρG = D(α) S(ζ) ρth(n̄) S†(ζ) D†(α), (1.14)

where, ρth(n̄) is the thermal states and n̄ is the average number of thermal photons. In the

special case of n̄ = 0, ρG in Eq. (1.14) represents a pure Gaussian state that can be expressed

as a displaced squeezed vacuum state, namely
∣∣∣ψ〉

= D(α) S(ζ) |0〉. Note that in the case

ofHowever, for multimode states, the decomposition in Eq. (1.14) can be very involved.

A Gaussian state is determined entirely by its first and second order moments are non-

zero. In other words, all cumulants of a Gaussian state of order n > 2 are zero. In general,

an n-mode Gaussian state is described in terms of the 2n×2n real symmetric matrix, known

as the variance matrix. A comprehensive review of different forms of the variance matrix

and the allowed Gaussian (symplectic) operations is given in [56, 57]. The question of how

to detect if a given single mode state ρ is non-Gaussian has been addressed in the literature.

There have been several proposals for detecting the single mode non-Gaussian states of light

[58–63]. The question of how to quantify how non-Gaussian a state is, is also an important

one. This we shall discuss in the next subsection.

1.3.1 Measures of Non-Gaussianity

To quantify the non-Gaussian character of single mode quantum optical states, several mea-

sures are proposed, defined in terms of distance from the corresponding Gaussian counter-
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part, both in Hilbert space and in phase space. The Gaussian counterpart ρg of any non-

Gaussian quantum optical state ρ is defined as the state that has first and second order

moments equal to those of ρ itself. These distance measures essentially tell how far the state

is from the Gaussian state that resembles most to it. Next, we describe some well-known

distance measures.

A. Measure Based on Hilbert-Schmidt Distance

This measure of NG is defined as the Hilbert-Schmidt distance of the given non-Gaussian

quantum optical state ρ from its Gaussian counterpart ρg [64]

dNG(ρ) =
Tr [(ρ − ρg)2]

Tr [ρ2]
. (1.15)

It is worth noting that dNG(ρ) is neither additive nor multiplicative for product states.

As a consequence, in the case of multimode quantum optical states, it can’t be considered a

good measure of NG.

B. Measure Based on Quantum Relative Entropy

Non-Gaussianity of quantum states of light has also been described in terms of the quantum

relative entropy between the given state and its Gaussian counterpart as [65]

δNG = S(ρ || ρg) = − Tr [ρ lnρg] − S(ρ), (1.16)

where, S(ρ) = Tr [ρ ln ρ] is the von-Neumann entropy of ρ. It is worth pointing out that δNG

is defined only in the case of mixed states of light. In the case of pure states, δNG depends

only on the Gaussian counterpart, not the state since S(ρ) = 0. According to this measure

all pure states with same Gaussian counterpart, have same amount of NG.

C. Measure Based on Wehrl Entropy

Unlike the Glauber-Sudarshan P distribution and the Wigner distribution W Husimi-Kano

distribution associated with the state ρ defined by Qρ(z,z∗) = 〈z|ρ|z〉, enjoys all the prop-

erties of a classical probability distribution, in particular, point-wise positivity and no more

singular than a delta function. An entropy analogous to the von-Neumann entropy of a quan-

tum state of light is the Wehrl entropy [66] that is defined in terms of the Q distribution of

ρ as Hw(ρ) = −
∫
d2z
π Qρ(z) ln Qρ(z). Ivan et. al. [67] have defined a measure of NG of a state

ρ in terms of its Wehrl entropy as

NG(ρ) = Hw (ρ || ρg) = Hw(ρg) − Hw(ρ). (1.17)
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The quantity NG(ρ) could be considered as the Kullback-Leibler distance between the

classical likeQ distributions corresponding to ρ and its Gaussian counterpart ρg. Unlike the

quantifications based on Hilbert-Schmidt distance [64] and quantum relative entropy [65],

the measure of NG based on Wehrl entropy [67] enjoys several important properties such as

additivity, covariance under uniform phase-space scaling etc.

1.4 Entangled States of Light

1.4.1 Entangled States

A pure state of a bipartite quantum system
∣∣∣ψAB〉 termed separable if it cant be written as a

product of states
∣∣∣ψA〉 and

∣∣∣ψB〉 corresponding to the individual subsystems, i.e.,∣∣∣ψAB〉 =
∣∣∣ψA〉 ⊗ ∣∣∣ψB〉 . (1.18)

The state
∣∣∣ψAB〉 is said to be entangled if it can’t be written as in Eq. (1.18). Note that

if
∣∣∣ψA〉 and

∣∣∣ψB〉 are states in Hilbert spaces of dimension m and n, the bipartite state
∣∣∣ψAB〉

lives in an m × n dimensional Hilbert space. In the case of mixed states, where states are

represented by density operators, the condition for separability generalizes to [68]

ρAB =
∑
k

pk ρ
k
A ⊗ ρ

k
B, (1.19)

where, ρki =
∣∣∣ψki 〉〈ψki ∣∣∣ (i = A,B) is a pure state projection, with pk ≥ 0 and

∑
pk = 1. A

mixed bipartite state that is not separable in the sense of Eq. (1.19) is said to be entangled.

Entangled states could be realized in terms of several physical systems such as pair of atomic

spins, nuclear spins, optical modes [3] etc. Here, we focus on the entanglement generated

between the modes of a quantized electromagnetic field. As a simple example of entangled

pure state of light one can think of the two-mode squeezed vacuum state (TMSV) given by,∣∣∣ψtmsv
〉

= Sab(r) |0,0〉 =
1

coshr

∞∑
k=0

(tanhr)k |k,k〉 , (1.20)

where Sab(r) = exp [r(a†b† − ab)]. The TMSV can’t be written as a product of the states of

the individual modes and hence it is entangled. Bipartite quantum optical states of which

TMSV is an example, are called continuous variable states.

1.4.2 Detection of Entanglement

A criterion for separability of a bipartite state was first proposed by A. Peres [69] in terms of

the positivity of the bipartite state under the partial transposition operation. However, soon

after his proposal, Horodecki et. al. proved that the positiveness of the partially transposed
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density matrix is a necessary and sufficient condition for separability in the case of bipartitte

states in 2× 2 or 2× 3 dimensions [70]. In the case of bipartite states in higher dimensional

Hilbert space negativity under partial transposition is a sufficient criterion only.

Separability conditions for bipartite continuous variable states were formulated inde-

pendently by Duan et. al. [71] and R. Simon [72]. While Duan criterion is based on canonical

uncertainty relation between non-commuting observables, Simon’s condition is an extension

of Peres-Horodecki condition to continuous variable systems. In the case of non-Gaussian

states, stronger separability criteria were proposed by Schchukin and Vogel [73] and Mi-

ranowicz and Plenio [74] that includes the condition of positive partial transposition as a

special case.

1.4.3 Quantification/Measure (s) of Entanglement

In the case of pure bipartite states |ψAB〉, entanglement is easily computed in terms of the

entropy of entanglement [75]. It is defined as the von-Neumann entropy of the reduced state

given as

E(|ψAB〉) = S(ρr) = − Tr [ρr ln ρr], (1.21)

where the reduced state ρr is obtained by tracing over any of the subsystems (ρr = TrA[|ψAB〉

〈ψAB|] = TrB[|ψAB〉〈ψAB|]]). This measure of entanglement is valid for finite dimensional as

well as continuous variable systems.

On the other hand, in the case of bipartite mixed entangled states, the notion of entropy

of entanglement is generalized to the entanglement of formation (EOF) [76] which is defined

as the minimal amount of pure state entanglement required to reproduce the concerned state.

For a mixed entangled state ρAB is defined as

EOF(ρAB) = inf
{pk ,|ψk〉〈ψk |}

∑
k

pk E(ψk), (1.22)

where the infimum is taken over all possible pure state ensemble {pk ,
∣∣∣ψk〉〈ψk∣∣∣} and E(ψk) is

the entropy of entanglement for
∣∣∣ψk〉. As is evident from the definition of EOF (Eq. 1.22), for

a pure state ρAB =
∣∣∣ψAB

〉〈
ψAB

∣∣∣, EOF converges to the entropy of entanglement (Eq. 1.21).

Unlike in the case of pure states, in the case of mixed entangled states of light an explicit

formula for EOF could be given only in the case of symmetric Gaussian states [77]. We shall

have occasion to put to use such a formula for EOF of two-mode symmetric Gaussian state

in Chap. 5.

In the case of two-mode non-Gaussian entangled states of light there have been several

proposals for quantification of entnaglement such as logarithmic negativity [78], Einstein-
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Podolsky-Rosen correlation [71], Hillery-Zubairy correlation [79] etc. However, finding a com-

putable measure of entanglement for the non-Gaussian entangled states of light has yet not

been settled. In this cnnection it is worth mentioning that the axiomatic theory of entangle-

ment measures was first formulated by Vedral and co-workers [80]. Later, a more mathe-

matical description was provided by G. Vidal [81] in terms of entanglement monotones. Log-

arithmic negativity is an example of an entanglement monotone. A comprehensive review

on measures of entanglement is given in [4, 82].

1.5 Quantum Teleportation with Optical Resources: Braunstein-Kimble

Protocol

This protocol for quantum teleportation (QT), where two parties [say Alice and Bob] can

send an unknown quantum state to each other by sharing an entangled pair of state and

using classical communication, was first given by Bennett et. al. [83] in the case of qubits.

Later, an experimentally realizable extension of this protocol to quantum optical systems

was given by Braunstein and Kimble [84]. Quantum teleportation with entangled optical

resources, implementing the Braunstein- Kimble (BK) protocol, has also been experimen-

tally realized [85–89]. A detailed review on the recent advances in teleportation with optical

resources has been given in [90].

1.5.1 Schematic of Braunstein-Kimble Protocol for Continuous Variable Teleportation

The BK protocol for QT using entangled states of light is schematically described in the Fig.

Figure 1.1: Schematic of BK Protocol.

1.1. First an entangled EPR pair is sent to two

parties, say Alice and Bob. Alice then sends her

state and an unknown quantum state of light

through a homodyne mixer. Subsequently, Alice

makes joint bell-type measurements on the quadra-

ture variables corresponding to her state and the

unknown state via balanced beam splitters. Af-

ter the measurement, Alice communicates her re-

sults to Bob over a classical channel (say tele-

phone). Depending upon the particular outcome that Alice has obtained, Bob performs

appropriate (as specified in the protocol) operations (for example displacement) on his state

and eventually retrieves the unknown input state.



Chapter 2
Beam Splitter Generated Entanglement

from Quantum States with Multiple

Nonclassicality Inducing Operations

It is well-known that two mode entangled states can be generated at the output of a linear

device like beam splitter (BS) provided atleast one of the two input ports is fed with non-

classical state of light [13–17]. The simplest examples of nonclassical states of light are the

photon number state |m〉 and the quadrature squeezed state
∣∣∣ψsv

〉
= S(r) |0〉. Slightly more

general examples of nonclassical states are ρm = Nm a†m ρcl am and ρsq = S(r) ρcl S
†(r),

where Nm is the normalization constant and ρcl is any classical state. Evidently, the pho-

ton excitation (a†m) and squeezing operations (S(r)) are nonclassicality (NC) inducing oper-

ations, as the states ρm and ρsq considered above are nonclassical. Quantitative studies on

BS generated entanglement with nonclassical input states are known to exhibit a mono-

tonic dependence of BS output entanglement on input NC, in the case of the states |m〉 and∣∣∣ψsv
〉

[13, 14, 17].

The purpose of the chapter is to carry out similar quantitative studies on more general

input nonclassical states and investigate the dependence of BS output entanglement on in-

put NC. In particular, we have focussed on the class of nonclassical states that are generated

under multiple NC-inducing operations (MNIO), as discussed in the introduction. The partic-

ular states that we have considered in this context are the squeezed number state (SNS) [21]

and photon added squeezed vacuum state (PAS) [22], which as mentioned earlier are gener-

ated under two NC-inducing operations, viz., squeezing and photon addition, in two differ-

ent orders. After briefly reviewing the BS generated entanglement with input number state
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and squeezed vacuum states, i.e., states generated under single NC-inducing operations, we

analyze the dependence of BS output entanglement on relevant state parameters in the case

of MNIO class of states.

Contrary to the cases with input states having single NC-inducing operations, in the

case of MNIO states, in particular in the case of PAS, we observe that the BS generated

entanglement is a non-monotonic function of the input state parameters, viz. the number

of photon addition (m) and the squeeze parameter (r). To understand this non-monotonic

behavior we further analyze certain well known measures of input NC such as nonclassical

depth [48], Wigner negativity [49] and Hilbert-Schmidt distance from nearest classical state

[47]. Our numerical results indicate that these measures of NC exhibit behavior that is not

consistent with BS output entanglement curves in the case of PAS and hence fail to account

for the non-monotonicity.

Finally, we explain this monotonic dependence of the BS generated entanglement for input

PAS in terms of the mutual competition between the NC-inducing operations, namely pho-

ton addition and quadrature squeezing, as manifest in the contours of the Husimi-Kano Q

distribution associated with these states. We find that while the relative competition is in-

significant in the case of SNS and hence leads to the monotonic dependence of BS output

entanglement upon m and r, this competition in the case of PAS is quite significant. This is

our view is what renders the BS output entanglement curves non-monotonic.

2.1 Generation of Entanglement by a BS from Nonclassical Input States

A passive BS can be realized in terms of a silvered mirror for which the total photon count

(intensity for classical E.M. field) at the input remains conserved at the output. In this thesis,

we consider only passive 50 : 50 BS which reflects half of the incident beam and transmits

Figure 2.1: Schematic of a Beam Splitter.

the rest. A passive 50 : 50 BS is mathematically

described by the transmission matrix, i.e., the

matrix relating the input and the output mode

operators,aout

bout

 =

 1/
√

2 1/
√

2

−1/
√

2 1/
√

2


ain

bin

 (2.1)

In the Fig. 2.1, we show the basic schematic

of a BS. It is well known that, if one of the input

ports of a passive BS is fed with a nonclassical state of light while the other input port is left

with vacuum, output state will necessarily be entangled [13–15]. In the above mentioned
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setting, input single mode NC is not only necessary but also sufficient to yield entanglement

at the output [16]. On the other hand, if the input state is classical, output state is separable

[17].

2.2 BS Generated Entanglement from Input Number State and Squeezed

Vacuum State

To set the stage for the analysis in the case of the MNIO class of nonclassical states, we briefly

review, in this section, the BS generated entanglement for input single mode nonclassical

states of light, generated under single NC-inducing operations, fed at one of the input ports

while the other port is left with vacuum. We consider, in particular, photon number state,

|m〉, and quadrature squeezed vacuum state, S(r)|0〉. The entanglement of the BS output

states (which are in our case are pure states) is measured in terms of von-Neumann entropy

of the reduced state since it is a pure state. We denote the BS output entanglement with the

input state |ψ〉 by EBS(|ψ〉).

For input single mode photon number state |m〉, the BS output state becomes,

|m〉 BS−−→ 1
2m/2

m∑
k=0

mk


1/2

|m− k,k〉 (2.2)

with entanglement given by

EBS(|m〉) = −
m∑
k=0

1
2m

mk
 ln

[ 1
2m

mk
]. (2.3)

Since a passive BS doesn’t change the Gaussian character of the input states at the output,

 1

 1.5

 2

 5  10  15

(a)

EBS(|ψ>)

m
 0.25  0.5  0.75

 0.2

 0.4

 0.6

(b)

r

Figure 2.2: Dependence of EBS for input

(a) |m〉 and (b)
∣∣∣ψsv

〉
.

we can analytically evaluate, by first comput-

ing the variance matrix of the reduced output

state, the BS generated entanglement in the

case of input squeezed vacuum state as,

EBS(
∣∣∣ψsv

〉
) =

e
r
2 + 1

2
ln

[e r2 + 1
2

]
− e

r
2 − 1

2
ln

[e r2 − 1
2

]
.

(2.4)

In Fig. 2.2, we plot the BS generated entanglement in the case of input number state and

squeezed vacuum state. In the case of number state [Fig. 2.2(a)], EBS(|m〉) monotonically

increases with increase in m. On the other hand, it can be analytically shown that EBS(
∣∣∣ψsv

〉
)
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given by Eq. (2.4) is a monotonically increasing function of r since the slope

∂
∂r

EBS(
∣∣∣ψsv

〉
) = −e

r
2

4
ln

[1 − e −r2
1 + e

−r
2

]
(2.5)

is always strictly positive for all r > 0.

2.3 States Generated Under MNIO

In this section we give a description of states generated under MNIO, in particular under

photon addition/subtraction and quadrature squeezing operations acting on the vacuum

in different orders. We then bring out some interesting properties of these states that will

be relevant for later discussions. The MNIO class of states that we would like to focus on

 1

 2

 3

 4

 0.25  0.5  0.75

(a)

III

1/λmin

r
 0.25  0.5  0.75

 0

 3

 6

(b)

Q

r

 2

 4

 6

 0.25  0.5  0.75

(a)

II

1/λmin

r
 0.25  0.5  0.75

 0

 1

 2

(b)

Q

r

 1

 3

 5

 0.25  0.5  0.75

(a)

I

1/λmin

r
 0.25  0.5  0.75

 0

 1

 2
(b)

Q

r

Figure 2.3: Dependence of (a) 1/λmin

and (b) Q on r for PAS (I), PSS (II) and

SNS (III). Different curves correspond to

m = 1 (solid line), 2 (dashed line), 3

(dotted line), 4 (dash-dotted line) and

5 (dash-double-dotted line). Horizontal

long dashed lines correspond to the val-

ues 2 in (a) and 0 in (b).

in this thesis are mathematically represented

as ∣∣∣ψpas

〉
=

1√
Nm

pas
a†m S(r) |0〉 , (2.6a)

∣∣∣ψpss

〉
=

1√
Nm

pss
am S(r) |0〉 , (2.6b)

∣∣∣ψsns
〉

= S(r) |m〉 = S(r)
a†m
√
m!
|0〉 , (2.6c)

where the normalization constants Nm
pas and

Nm
pss are defined given by Nm

pas = m!µmPm(µ),

Nm
pss = m!ν2m∑m

k=0
m!

(m−k)!k! (−µ2ν )k
H2
k (0)
k! , µ =

coshr and ν = sinhr. Here Pn(x) and Hn(x) are

respectively nth order Legendre and Hermite

polynomials.

As the MNIO class of states listed in Eq. 2.6

are generated under the squeezing and pho-

ton addition/subtraction operations, it will be

interesting to analyze the nonclassical prop-

erties of these states as characterized by (a)

the amount of squeezing, defined in terms of

the minimum eigenvalue of the variance ma-

trix associated with the concerned states and

(b) the sub-Poissonian character quantified by

the Mandel Q parameter. In Fig. 2.3 we plot-

ted 1/λmin and Mandel Q parameter as a func-

tion of r for various values of m in the case of PAS, PSS and SNS. Note that the state is
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squeezed when λmin <
1
2 and exhibits sub-Poissonian statistics when Q < 0 (by definition Q

is bounded from below by −1). Note that in the case of PSSs with even m (m = 2,4 in Fig.

2.3), the states don’t exhibit sub-Poissonian character for any values r.

It is instructive, in the present context, to characterize nonclassical states as follows:

(i) squeezed (λmin <
1
2 ) but not exhibiting sub-Poissonian character (Q < 0),

(ii) exhibiting sub-Poissonian character (Q < 0) but not squeezed (λmin <
1
2 ),

(iii) neither exhibiting sub-Poissonian character (Q < 0) nor squeezed (λmin <
1
2 ) and

(iv) both exhibiting sub-Poissonian character (Q < 0) and squeezed (λmin <
1
2 ).

Note that nontrivial examples of already known nonclassical states with property (i) are

the Kerr states [38, 39] while those with property (ii) are the photon added coherent state

studied in [37]. The nonclassical states with the property (iii) were first studied by Agarwal

and Tara [91] and their NC was characterized in terms of violation of inequalities involving

higher-order moments of the number operator. We would like to study the nonclassical

properties of the MNIO class of states in the light of the above characterization.

A careful reading of Fig. 2.3 suggests that there are region of the parameter r where the

states PAS, PSS and SNS are either squeezed only (property (i)) or exhibit sub-Poissonian

character only (property (ii)). However, to make these results more manifest, we find it

convenient to define witnesses dsq and dsp associated with the squeezing character (λmin <
1
2 )

and the sub-Poissonian character (Q < 0) as follows

dsq = min {0, 2λmin − 1}, dsp = min {0, Q}. (2.7)

Note that both dsq and dsp are defined in the range [−1,0]. In fact dsq = 0 implies that the

state is squeezed and dsp = 0 implies that the state doesn’t exhibit sub-Poissonian character.

We have replotted in Fig. 2.4 the results that we have already shown in Fig. 2.3, in terms of

the witnesses dsq and dsp for m = 1 and 3 including m = 5.

Let’s focus on the m = 1 plots first. The dsp (dashed line) and dsq (solid line) curves

fall in non-overlapping regions of the squeezing parameter r. For small values of r, the

photon addition/subtraction operations completely contributes to the NC of these states,

whereas for large r (beyond a certain critical value of r that is dependent on the state) the

squeezing operation is what completely contributes and hence does not exhibit any sub-

Poissonian character at all. Hence these states have properties (i) and (ii) in two different
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non-overlapping parameter regions. However, as is evident from Fig. 2.4, there is an inter-

mediate region where both dsq and dsp are zero, hence the NC of these states, in this region,

is characterized by the property (iii), i.e., they exhibit neither squeezing nor sub-Poissonian

character.

Let’s next focus on the m = 3 and m = 5 plots. Qualitatively the behavior is as in the case

ofm = 1. However, there are some quantitative differences. In the case of PAS, the regions of
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Figure 2.4: Plot of dsq (solid line) and dsp

(dashed line) vs r for m = 1, m = 3 and m = 5

in the cases of (a) PAS, (b) PSS and (c) SNS.

r where dsq = 0 and dsp = 0 has be-

comes wider in comparison to the m = 1

case. In the case of SNS, this widening

is even more prominent. It turns out that

this trend persists as m increases. Hence,

we can conclude that, in general, PAS and

SNS are characterized by the NC obeying

properties (i), (ii) and (iii) in different re-

gions of r. On the other hand, in the case

of PSS, the region where dsq = 0 and

dsp = 0 is much narrower compared to

that in m = 1 case. Hence, we expect that

for larger values of m (> 5), the curves for

dsq and dsp will cross each other and a region of r will appear where both dsq and dsp will be

non-zero. In this region, the NC of PSS will be characterized by the property (iv).

Thus, we have found that the MNIO class of states provide examples of nonclassical

states whose NC is characterized by the sets of properties (a) (i), (ii) and (iii) or (b) (i), (ii)

and (iv), in different parameter regions of r, for given values of m. In fact the figures in Fig.

2.4 could be looked upon as an NC phase diagram since they depict the parameter regions in

which only one of the nonclassical characters, viz., squeezing, sub-Poissonian character or

higher-order NC is present. These regions are like the NC phases. The region where dsq < 0

and dsp < 0 in the case of PSS for m > 5 is like the coexistence region.

2.4 BS Generated Entanglement from PAS and SNS

In this Sec. we discuss generation of entanglement by a passive 50 : 50 BS with MNIO class

of states (as discussed in Sec. 2.3) at one of the input ports while the other port is left in the

vacuum state. For simplicity we deal with only PAS and SNS in this section. We investigate

the question of the dependence of BS output entanglement on input NC when either SNS or
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PAS is input at one of the ports of the BS.

Using Eq. 2.2 we get the BS output states for input SNS and PAS as,

|ψpas〉
BS−−→ 1√

Nm
pas

∞∑
k=0

√
(2k +m)!
k!

(τ
2

)k 1

2k+m
2

2k+m∑
p=0

(
2k +m
p

)1/2

|2k +m− p,p〉 and (2.8a)

|ψsns〉
BS−−→

m∑
n=0

Cnm
1

2n/2

n∑
p=0

(
n
p

)1/2

|n− p,p〉, (2.8b)

where,
(A
B

)
denotes the binomial coefficient and the coefficients Cnm are as given in [21, 92]

We measure the entanglement of the BS output state by its local von-Neumann
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(a)

EBS(|ψ>)

r
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(b)

r

Figure 2.5: Plot of EBS(
∣∣∣ψ〉

) for (a) PAS and (b) SNS

vs r for m = 1 (solid line), 2 (dashed line), 3 (dot-

ted line), 4 (dash-dotted line) and 5 (dash-double-

dotted line).

entropy (Eq. 1.21). In Fig. 2.5 we

have plotted the BS generated entan-

glement for the input PAS and SNS,

i.e., EBS(
∣∣∣ψpas

〉
) and EBS(

∣∣∣ψsns
〉
) re-

spectively. It is clear from Fig. 2.5(a)

that EBS(
∣∣∣ψpas

〉
) (except in the case of

m = 1) shows a non-monotonic depen-

dence on both r and m. For all values

of m (≥ 2), EBS(
∣∣∣ψsns

〉
) first decreases

and then increases with increase in r.

For sufficiently large r (& 0.60) in fact

EBS(
∣∣∣ψpas

〉
) depends predominantly on r. Further, it can be seen from Fig. 2.5(a) that

EBS(
∣∣∣ψpas

〉
) curve depends nonmonotonically on r for various values of m; EBS(

∣∣∣ψpas

〉
) for

larger values of m, in fact, is less than that for smaller values of m, beyond r ∼ 0.60.

In contrast, for SNS, EBS(
∣∣∣ψsns

〉
) [Fig. 2.5(b)] increases monotonically with both r and m.

This monotonic dependence is quite similar to what one has either S(r) |0〉 or |m〉 as input at

the BS, as discussed in Sec. 2.2.

From a comparison of the results in the cases of SNS and PASVS, it is evident that the

dependence of BS output entanglement, E|ψ〉BS , on r and m depends critically on the order in

which the squeezing, S(r), and photon addition, a†m, operations act on the initial vacuum

state. This nonmonotonic dependence in the case of PAS is, indeed, counterintuitive, given

that the BS input states, generated under single NC-inducing operation, lead to monotoni-

cally increasing BS output entanglement, as observed in the previous section.

It is noteworthy that in the case of m = 1, entanglement curves for
∣∣∣ψpas

〉
and

∣∣∣ψsns
〉

are

identical. This feature can be understood from the following argument. For m = 1, using
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the properties of the squeezing operator one can show that

∣∣∣ψpas

〉
=
a† S(r) |0〉

µ
=
S(r) (µa† + νa) |0〉

µ

= S(r) a† |0〉 = S(r) |1〉 , (2.9)

where µ = cosh(r) and ν = sinh(r). Thus we see that for m = 1, |ψpas〉 and |ψsns〉 are identical.

On the other hand, for m = 2, a similar calculation yields

∣∣∣ψpas

〉
=

a†2 S(r) |0〉
µ
√

2(3µ2 − 1)
=
S(r) (µa† + νa)2 |0〉
µ
√

2(3µ2 − 1)

=
S(r) (µ2a†2 +µν(2a†a+ 1)) |0〉

µ
√

2(3µ2 − 1)

=
1

µ
√

2(3µ2 − 1)

(
µ
√

2 S(r) |2〉 + νS(r) |0〉
)

, S(r) |2〉 (2.10)

Note that here
∣∣∣ψpas

〉
is a superposition of two different squeezed number states, namely,

S(r) |2〉 and S(r) |0〉. For higher photon excitation (m ≥ 2),
∣∣∣ψpas

〉
contains superposition of

more SNSs and differs from the particular S(r) |m〉 even more. As a consequence, with an

increase in m, EBS(
∣∣∣ψpas

〉
) differs more from EBS(

∣∣∣ψsns
〉
) as observed in Fig. 2.5.

2.5 Effective NC of Input PAS and SNS

In a first attempt to resolve the non-monotonic dependence mentioned above, we argue that

for states generated under multiple NC-inducing operations, SNS and PASVS in particular, r

and m individually may not measure the nonclassicality of these states, but one should per-

haps work with an effective measure. Several nonclassicality measures have been proposed

in the literature such as the nonclassical depth [48], Wigner negativity [49] and the Hilbert-

Schmidt distance [47] from the nearest classical state. In this Sec. we shall investigate if any

of these measures faithfully captures the NC of these states, and if they do, working with

such effective measure (s) will allow us to understand this nonmonotonic dependence.

2.5.1 Nonclassical Depth

The nonclassical depth is defined as the minimum value of smoothing, ηmin, needed to make

an η convoluted Glauber-Sudarshan P distribution, R(z,η) = 1
η

∫
d2ω
π e −

|z−ω|2
η P (ω), a positive

semidefinite regular function [48]. The function R(z,η), for PAS and SNS are given by (Ap-
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pendix A)

R(z,η)pas =
Am1 e

|z|2
1−ηW0(z,z∗,η)

µNm
√
η2 − τ2(1− η)2

m∑
k=0

(−1)mm!
k!(m− k)!

(D1

A1

)k
Lm−k

( |B1|2

4A1

)
, (2.11a)

R(z,η)sns =
Am2 e

|z|2
1−ηW0(z,z∗,η)

µ
√
η2 − τ2(1− η)2

m∑
k=0

(−1)m−km!
k!(m− k)!

(D2

A2

)k
Lm−k

( |B2|2

4A2

)
, (2.11b)

where

W0(z,z∗,η) = exp
(
−

η
1−η |z|

2 − τ2 [z2 + z∗2]

η2 − τ2(1− η)2

)
, A1 =

τ(1− η)2

2[η2 − τ2(1− η)2]
, A2 =

A1

µ2 −
τ
2
,

B1 =
ηz − τ(1− η)z∗

η2 − τ2(1− η)2 , B2 =
B1

µ
, D1 =

η(1− η)
η2 − τ2(1− η)2 , D2 =

D1

µ2 , µ = cosh r , τ = tanhr.

(2.12)

Ln(x) is the nth order Laguerre polynomial. Because of the presence of the Laguerre polyno-

mial in Eq. (2.11a) and Eq. (2.11b), the positiveness of the function R(z,η) is not guaranteed

for all choices of η < 1. In such cases, as prescribed in [48], the nonclassical depth has to

be taken to be unity. Thus we have a situation where the nonclassical depth for |ψsns〉 is the

same as that of |ψpas〉 or a photon number state and hence it is independent of the squeeze

parameter r. Clearly, the nonclassical depth fails to be a faithful measure of NC as far as

these states are concerned. Further, our conclusion, specifically in the context of these states,

is in agreement with the general conclusion that nonclassical depth is always unity for all

non-Gaussian pure states [53].

2.5.2 Wigner Negativity

Wigner negativity, δw, for any quantum state ρ is defined as the phase-space integral of the

negative part of the Wigner distribution Wρ(z,z∗) [49]. It is mathematically defined as (Eq.

1.13)

δw =

∫
dz
π |Wρ(z,z∗)| − 1

2
(2.13)

The Wigner distributions for PAS and SNS (Appendix B) are given by,

Wpas(α,α
∗) =

2(−1)mm!e−2|β|2µmνm

2mNm

m∑
k=0

m!(τ2 )−k

k!(m− k)!
Lm−k

(2|β|2

τ

)
, (2.14a)

Wsns(α,α
∗) =(−1)me−2|β|2Lm(4|β|2), (2.14b)

where µ = cosh r , ν = sinh r , τ = tanhr and β = µα − να∗.

In Fig. 2.6, the Wigner negativity of PAS is plotted as a function of the squeeze pa-

rameter r for various values of the photon addition number m. For all values of m, the
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Wigner negativity falls off with increasing r. This can be understood as being due to the

photon addition operation for large r. In the case of SNS, however, Wigner negativity is

 0.2

 0.4

 0.6

 0.25  0.5  0.75

δ
w

r

Figure 2.6: Dependence of δw on r for

m=1 (solid line), 2 (dashed line), 3 (dot-

ted line), 4 (dash-dotted line) and 5

(dash-double-dotted line) for PAS.

independent of r and hence it is the same as

that of the number state |m〉. The indepen-

dence of Wigner negativity on r, in the case of

SNS, can be easily understood from the follow-

ing fact. If Wρ(x,p) is the Wigner function of a

given state ρ, then the Wigner function of the

state ρ′ = S(ζ)ρS†(ζ) is Wρ(x′,p′), where x′,p′

and x,p are related to each other by a linear

canonical transformation. Since the Jacobian

of any linear canonical transformation is unity,

the Wigner negativity of ρ → ρ′ remains the

same.

As in the case of the nonclassical depth, again, we have a situation where the Wigner

function negativity fails to be a faithful measure of NC as far as SNS is concerned. As our

aim is to do a comparative study of PAS and SNS in the context of entanglement of the BS

output state with these states as the input, it is desirable that we have a measure of NC

that works equally well for both the NC-inducing operations, i.e., photon excitation and

quadrature squeezing.

2.5.3 Hilbert-Schmidt Distance from Nearest Classical State

The Hilbert-Schmidt distance based measure of single mode quantum state ρ, dNC(ρ), is

defined as its distance from the nearest classical state, where, hilbert-Schmidt metric has

been used as the distance function [47]. Since coherent states |β〉 are the only pure classical

states |β〉 [36], dNC for a pure state |ψ〉 is defined as,

dNC(
∣∣∣ψ〉

) = inf
β

√
2[1− |〈β|ψ〉|2]1/2. (2.15)

where infimum is taken over the set of all coherent states |β〉, with β being a complex num-

ber.

We have calculated dNC for the two states PASVS and SNS. While dNC for PAS has a

closed-form analytic expression given by

dNC

)
PAS

=
√

2
[
1− mme−m

(1− τ)mNm

] 1
2
, (2.16)
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dNC for SNS can at best be reduced to the simple form

dNC

)
SNS

=inf
β

√
2
[
1− τ

me−|β|
2+ τ

2 (β2+β∗2)

µ2m
Lm

( |β|2
2µν

)] 1
2
, (2.17)

from which the computation proceeds via a numerical minimization.

In Fig. 2.7, we have plotted dNC for PASVS and SNS. For PAS, dNC first decreases and

then increases with an increase in r for all m; however, for r . 0.20, we observe a monotonic
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Figure 2.7: Dependence of dNC for (a) PASVS

and (b) SNS on r for m=1 (solid line), 2

(dashed line), 3 (dotted line), 4 (dash-dotted

line) and 5 (dash-double-dotted line)

.

dependence of dNC upon m while for

larger r(& 0.20) such monotonicity breaks

down. For m ≥ 2, dNC shows a non-

monotonic behavior [Fig. 4(a)] consistent

with that of EBS [Fig. 2(a)]. In contrast,

in the case of m = 1, dNC reveals non-

monotonic behavior that is inconsistent

with EBS. Here, we have a situation, in

particular, form = 1, in the case of PASVS,

where NC (as measured by dNC) decreases

while the corresponding EBS [Fig. 2.5(a)] increases, which is unphysical. On the other hand,

for SNS, we observe a non-monotonic dependence of dNC [Fig. 2.5(b)] on r but a monotonic

dependence on m. For all m, as r increases, it first decreases and then increases. Similar to

the case for PAS, for SNS, we also have an unphysical situation where the NC (as measured

by dNC) decreases while EBS [Fig. 2.5(b)] increases with r for all m. This leads us to the

conclusion that dNC is not an acceptable measure of NC of states generated under multiple

NC-inducing operations, in particular SNS and PAS.

It appears from the above discussion that none of the three measures considered above

is an acceptable measure of NC of the states we have considered here. Whether a suitable

measure of NC can be given that shows a dependence on r and m for such states that is

consistent with the dependence of EBS on these parameters remains to be investigated. We

shall return to this question in Chap. 3. For the present, we shall deal with the question

of how to understand the monotonicity of the entanglement curves in the case of SNS and

the non-monotonicity in the case of PAS, in terms of the contours of the Q distributions

associated with these states. This shall be the subject of the next section.



22 Monotonicity Versus non-Monotonicity question; Role of Competing Nonclassicalities

2.6 Monotonicity Versus non-Monotonicity question; Role of Competing

Nonclassicalities

In this Sec. we shall outline our point of view that the nonmonotonicity in the EBS curves

(in the case of PAS) is a consequence of a competition between the two different kinds of

NC-inducing operations underlying these states. Various counterintuitive features seen in

Fig. 2.5(a) can be attributed to the effects of such a competition. In particular the feature

that we discussed after Fig. 2.5, that EBS for larger values of m is in fact less than that for

smaller values of m beyond r ∼ 0.60.

2.6.1 Contours of Q Distribution and NC-inducing Operations

We illustrate this competition in terms of contours of the Q function associated with these

states. To begin with, it is helpful to visualize the effect of the two NC-inducing opera-

tions acting individually on an initial vacuum state in terms of the deformation induced in

the circular Q function contour of the vacuum state. As is well known, light (initially in a

coherent state) propagating through a medium with a Kerr nonlinearity undergoes radial

squeezing [39] and the photon number state can be thought of as an extreme case of a radi-

ally squeezed state. Here, figuratively speaking, the photon excitation (addition) operation

(a†)m can be thought of as deforming the circular Q function contour of the vacuum state

into an extreme crescent shape. On the other hand, the squeezing operation S(r) can be

thought of as deforming the initial circular Q function contour of the vacuum state into an

ellipse [38].

2.6.2 Competing Nonclassicalities and Non-monotonicity of Entanglement

The above picture can now be applied to states with two NC-inducing operations applied in

succession. As is evident from Fig. 2.8, in the case of PAS, for small r, with an increase in m,

the contours become more crescent shaped indicating the dominant number state character.

However, as r increases, except for the case of m = 1, the crescent-shaped contours smooth

out and become more elliptic. This points to a crossover in the dominant character of the

state, from a photonic to a quadrature squeezed one. Such a crossover arises due to an

overwhelming competition between photon addition and quadrature squeezing operations.

For higher r (& 0.60), the Q function contours tend to become more and more elliptic. It is

our view that this competition, as manifest in terms of the crossover from crescent-shaped

to elliptic contours of the Q function, is what is behind the change in slope that is evident

in the EBS curve for PAS in Fig. 2.2(b).
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On the other hand, in the case of SNS (Fig. 2.9), unlike in the case of PAS, there does

not appear to be any significant crossover from crescent-shaped to predominantly elliptic

Q-function contours. This points to a rather insignificant competition between the two NC-

inducing operations, namely, photon excitation and quadrature squeezing. Consequently,

no change in slope is evidenced in the corresponding EBS curve [Fig. 2.5(b)].
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To sum up, the key to understanding the monotonicity vs nonmonotonicity question is,

therefore, the degree of competition between the two NC inducing operations. An over-

whelming competition leads to a slope change in the EBS curve and hence a non-monotonic

dependence. Whether, this competition is overwhelming or insignificant, can be inferred

from the contours of the Q functions associated with the states depending on whether or

not they undergo a crossover from crescent shaped to elliptic, as r or m is increased.

2.7 Discussion and Conclusion

In this chapter, we have introduced a useful notation of NC inducing operations. We have

then introduced a class of nonclassical states that are generated under multiple (in fact

two) NC-inducing operations, viz., the states PAS, PSS and SNS. We have analyzed the non-

classical properties of these states in relation to the presence or absence of squeezing/sub-

Poissonian character and displayed these results with the help of what we have called NC-
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phase diagram.

We have quantitatively studied the BS output entanglement for input single mode states

generated from successive application of two different NC-inducing operations that lead to,

in particular, SNS and PAS. We have observed that while BS output entanglement shows

a monotonic dependence on the squeeze parameter and the number of photon addition in

the case of SNS, this dependence is nonmonotonic in the case of PASVS. We show that any

attempt to understand this issue of monotonicity vs nonmonotonicity fails since none of the

well-known measures such as the nonclassical depth, the Wigner negativity and the Hilbert-

Schmidt distance proves to be an acceptable measure of NC of these states. We have offered

an intuitive picture in terms of contours of the associated Q function of these states and

pointed out that the competition between these two different NC-inducing operations is the

key to understand the monotonicity vs nonmonotonicity issue.



Chapter 3
Analysis of non-monotonicity of

entanglement in terms of an effective

nonclassicality measure

Let’s recall that in Sec. 2.5 of Chapter 2 we have examined in detail the question of whether

any known measure of single mode NC may be used to understand the non-monotonic

dependence of entanglement for the photon added squeezed vacuum state on number of

photon addition (m) and squeeze parameter (r). In this context we have examined several

well-known measures, viz. (i) nonclassical depth, (ii) Hilbert-Schmidt distance from nearest

classical state and (iii) Wigner negativity. However, we have found that none of these mea-

sures succeed in accounting for the non-monotonicity of the entanglement curves.

A question naturally arises as to whether one can construct a measure of NC that, when

used to quantify the effective NC of states with MNIO, reproduces the non-monotonic de-

pendence when present, as in the example mentioned above. In this chapter, we address this

question. We shall restrict our attention to pure states. First we shall give the construction

of such a measure and list its various properties. Then we shall use this measure to revisit

the problem of the dependence of the BS output entanglement on the effective NC of various

input states.

3.1 NC measure in terms of a suitably chosen function of the state

A way to quantify the NC of a state ρ is by the distance in the Hilbert space between ρ and

the nearest classical state. It is well-known that the only pure states that are classical are

the coherent states [36]. Thus, one may define a generic distance-based measure of NC of a
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pure state ρ (=
∣∣∣ψ〉〈

ψ
∣∣∣) as,

N (ρ) = inf
α
D (ρ , |α〉〈α|), (3.1)

where, D(ρ1,ρ2) defines a distance between the two states ρ1 and ρ2. Indeed, the Hilbert-

Schmidt measure, discussed in Sec. III, Chapter 2, is an example where D defines the

Hilbert-Schmidt distance between ρ and |α〉〈α|.

An alternative approach that we propose here is to construct a NC measure in terms

of the difference between E(ρ) and E(|α〉〈α|), where, E(ρ) is a suitably chosen function of

ρ such that E(|α〉〈α|) is independent of α. Of course one must ensure that this difference is

always positive. This alternative approach has the advantage that one can obviate the need

of taking an infimum over all values of α. One simple choice of such a function is,

E(ρ) = λmin

(
V (ρ)

)
, (3.2)

where, λmin

(
V (ρ)

)
is the minimum eigenvalue of the variance matrix V (ρ) corresponding to

ρ as defined in [56]. For this choice of E(ρ), one has E(|α〉〈α|) = 1
2 as a consequence of the fact

that both the eigenvalues of V (|α〉〈α|) are equal to 1
2 . Clearly, E(|α〉〈α|) is independent of α.

Note that this choice makes sense only in the case of Gaussian states as E(ρ) depends only

on the first and second moments of ρ. Accordingly, one could then define a NC measure

NV(ρ) as

NV(ρ) = E(|α〉〈α|) − E(ρ)

=
1
2
− λmin

(
V (ρ)

)
(3.3)

We would like to ensure that NV(ρ) is always positive, i.e., NV(ρ) ≥ 0 for all ρ. Hence it

is convenient to redefine NV(ρ) as

Nv(ρ) = max
{

0,
1
2
− λmin

(
V (ρ)

) }
. (3.4)

Evidently, Nv(ρ) > 0 whenever λmin

(
V (ρ)

)
< 1

2 , i.e.,ρ is squeezed. This immediately im-

plies that the NC of a single mode Gaussian state is entirely due to its squeezing character.

Interestingly, the result (Eq. 3.4) holds true for Gaussian mixed states as well. Here, it is

worth mentioning that the Nv(ρ) matches well with the nonclassical depth [48] of a Gaus-

sian state, i.e., τ = 1
2 − λmin

(
V (ρ)

)
. We shall have occasion to make use of this result in

Chap. 5.
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3.2 NC measure in terms of the Wehrl entropy

The choice in Eq. (3.2) is by no means unique. Another choice of E(ρ) that one could make,

as we have discovered, is

E(ρ) =Hw(ρ), (3.5)

where, Hw(ρ) = −
∫
d2z
π Q(z,z∗) ln Q(z,z∗) is the Wehrl entropy of ρ [66]. The Husimi-Kano

Q distribution is defined as Q(z,z∗) = 〈z|ρ|z〉, where |z〉 forms the coherent state basis. It can

be easily checked that Hw(|α〉〈α|) = 1 for all values of α. This choice will work for all pure

states (ρ =
∣∣∣ψ〉〈

ψ
∣∣∣) as Hw(ρ) depends on all moments of ρ. Thus we propose a measure of NC

for pure states as

Nw(|ψ〉) = E(
∣∣∣ψ〉〈

ψ
∣∣∣) − E(|α〉〈α|)

=Hw(
∣∣∣ψ〉

)− 1. (3.6)

The positiveness of Nw(|ψ〉) is ensured by the fact that minimum Wehrl entropy for any

single mode quantum optical state is unity and the minimum value is attained for the coher-

ent states [93]. It is pertinent to note that the Wehrl entropy has been used earlier to define

a measure of non-Gaussianity [67], as in Eq. 1.17 in Chapter 1. In fact, our definition of Nw

is inspired by the definition of NG measure mentioned above.

3.3 Invariance Properties of Nw

In this section we shall discuss the transformations on the state ρ under which Nw(ρ) re-

mains invariant, i.e., Nw(ρ) = Nw(UρU†), where, U is the unitary operator corresponding

to the transformation. These invariance properties of Nw follow from the transformation

properties of the Q distribution under relevant phase space transformations.

3.3.1 Invariance under Phase Space Displacements

Under the action of a phase-space displacement, D(z) : ρ→ ρ̃ = D(z) ρ D†(z), the Husimi Q

distribution associated with ρ changes to

D(z) :Qρ(β)→Qρ̃(β) =Qρ(β − z). (3.7)

This indicates that the phase-space displacement works as the rigid translation [66, 93]

that leaves Wehrl entropy unchanged, i.e. D(z) : Hw(ρ)→ Hw(ρ). Hence, it is evident from

the Eq. 3.6, that under the transformation D(z) : |ψ〉 →D(z)|ψ〉, its NC does not change, i.e.,

D(z) : Nw(|ψ〉)→Nw(|ψ〉). (3.8)
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3.3.2 Invariance under Passage through a Passive Linear System

A passive linear system is represented by the map

Uθ : ρ → ρ̃ = UθρU
†
θ ; Uθ = e−iθa

†a. (3.9)

Uθ maps a coherent state |α〉 to another coherent state
∣∣∣β〉 =

∣∣∣e−iθα〉. This is equivalent

to a proper rotation in phase space. Under the transformationUθ, the HusimiQ distribution

changes as [67]

Uθ : Qρ(β) → Qρ̃(β) =Qρ (e−iθβ), (3.10)

i.e., the Wehrl entropy does not change. Consequently, under a proper phase space rotation

Uθ :
∣∣∣ψ〉
→ |ψ̃〉, Nw(|ψ〉), as defined in Eq. 3.6 remains invariant.

Note that the transformations represented by (a) U = D(z) and (b) U = e−iθa
†a can be

looked upon as NC preserving operations in the contrast to the NC-increasing transforma-

tions that we have discussed in Chap. 2.

3.4 Nw for some pure quantum states of light

In this section we shall evaluate the measure of NC proposed above (Eq. 3.6) for some well-

known single mode states studied in the literature earlier, as well as the states that we have

considered in the previous chapter.

3.4.1 Photon Number State:

A photon number state |m〉 is obtained by applying photon excitation operator
(
a†m√
m!

)
on the

vacuum state |0〉. The Wehrl entropy of the photon number state |m〉 is given by [67]

Hw(|m〉) = 1 + m + ln m! − m Ψ (m+ 1), (3.11)

where, Ψ (m + 1) =
∑m
k=1

1
k − γ is the di-gamma function and γ ≈ 0.5772.. is the Euler
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Figure 3.1: Plot of Nw(|m〉) with m.

constant. Thus in the case of |m〉, we obtain an an-

alytic expression for NC as,

Nw(|m〉) =m + ln m! − m Ψ (m+ 1). (3.12)

We plot Nw(|m〉) for various values of m in Fig.

3.1. For smallm(≤ 4) we observe a rapid increase in

Nw(|m〉). As m increases, Nw(|m〉) increases mono-

tonically. This behaviour of Nw(|m〉) is consistent with that of Wigner negativity as noted

in [49].
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Let’s look at the large m limit of Nw(|m〉) given in Eq. (3.12). In the limit m → ∞,

ln m! ∼m lnm − m + 1
2 ln 2πm. On the other hand, limm→∞mΨ (m+1) ∼ m

2

(
ln(m+1)+lnm

)
.

Putting these expressions in Eq. (3.12) we get

lim
m→∞

Nw(|m〉) ∼
1
2

ln 2πm − m
2

ln
(m+ 1
m

)
(3.13)

The logarithmic growth in Nw(|m〉) with m for large m is evident from the Fig. 3.1.

3.4.2 Squeezed Coherent State:

A squeezed coherent state, |ψsc〉 = S(ζ)|α〉, is generated under quadrature squeezing opera-

tion, S(ζ) = exp
(
ζa†2−ζ∗a2

2

)
, applied on a coherent state |α〉, where ζ = reiθ; r and θ being the

squeezing strength and the squeezing direction respectively. We obtain an analytic expres-

sion of Nw for |ψsc〉 given by

Nw(|ψsc〉) = ln coshr. (3.14)

As one would expect Nw(
∣∣∣ψsc

〉
) depends only on the degree of squeezing and not the

direction of squeezing indicated by θ. Moreover, the state |ψsc〉 could be written as |ψsc〉 =

S(ζ)|α〉 = D(β)S(ζ)|0〉, where, β = µα − νeiθα∗, ν = sinhr. Further, S(ζ) |0〉 = e−iθa
†aS(r) |0〉,
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Figure 3.2: Plot of Nw(
∣∣∣ψsq

〉
) with r.

implying that the squeezing angle θ plays the role

of rotation of quadratures in phase space. We have

already discussed in Sec. 3.3 that Nw is indepen-

dent of displacements as well as rotations in phase

space. This explains the fact that Nw(
∣∣∣ψsq

〉
) in Eq.

3.14 depends only on the squeezing strength r. As

evident from Fig. 3.2, Nw(
∣∣∣ψsc

〉
) increases logarith-

mically with r for small r whereas it increases linearly for large r. This is so because in the

large r limit (r→∞), coshr ∼ er
2 and hence ln coshr = r − ln 2.

It is worth emphasizing here that in case of |m〉 as well as
∣∣∣ψsq

〉
, Nw increases monoton-

ically with m and r respectively, mimicking the monotonic dependence of the BS output

entanglement on m and r with these states as input. This implies that the BS output entan-

glement with these states as input increases monotonically with the amount of NC in these

states.

Nw(
∣∣∣ψsq

〉
) is a monotone of Nv(

∣∣∣ψsq

〉
)

In this conjunction, we further emphasize that the newly proposed measure of NC, Nw(|ψ〉)

(Eq. 3.6) is, in fact, a monotone of the NC measure Nv(ρ) (Eq. 3.3), in the case of Gaussian

pure state, namely
∣∣∣ψsq

〉
. This can be appreciated in the following way.
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The minimum eigenvalue of the variance matrix of the Squeezed coherent state is given

by, λmin

(
V (

∣∣∣ψsq

〉
)
)

= e−2r

2 . Putting the expression of λmin

(
V (

∣∣∣ψsq

〉
)
)

in Eq. (3.14) it can be

easily shown that

Nw(|ψsc〉) = ln
[ 1 − Nv

( ∣∣∣ψsq

〉)√
1 − 2Nv

( ∣∣∣ψsq

〉)]

⇒
∂Nw(|ψsc〉)
∂Nv

( ∣∣∣ψsq

〉) =
Nv

( ∣∣∣ψsq

〉)[
1 − Nv

( ∣∣∣ψsq

〉)] [
1 − 2Nv

( ∣∣∣ψsq

〉)] > 0. (3.15)

Evidently, Nw(
∣∣∣ψsq

〉
) increases monotonically with Nv(

∣∣∣ψsq

〉
). From the example of

∣∣∣ψsq

〉
it is quite natural to consider that Nw is a monotone of Nv for any Gaussian pure nonclassi-

cal state. It would be nice to prove that result, in general; however, currently the proof is

unknown and we shall address it elsewhere.

3.4.3 Photon Added Coherent State:

An m-photon added coherent state (PAC) is given by

∣∣∣ψpac

〉
=

1
√
Nm

a†m |α〉 , (3.16)

where, Nm = m! Lm (−|α|2) is the normalization constant. For the sake of simplicity we
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Figure 3.3: Plot of Nw(
∣∣∣ψpac

〉
) vs α for

m = 1 (solid line), 2 (dashed line), 3 (dot-

ted line), 4 (dash dotted line) and 5 (dash

double dotted line).

consider real displacement. In Fig. 3.3, we

plot the dependence of Nw(|ψpac〉) on α for

different values of m. The NC of this state,

Nw(|ψpac〉), increases monotonically with m

whereas it decreases with |α|. For sufficiently

high α (>> 1), Nw(|ψpac〉) becomes almost in-

dependent of m. As is evident form the Fig.

3.3, for fixed α, a larger photon excitation

makes the state more nonclassical. On the

other hand, for a given m, a sufficiently large

value of α renders the state almost classical.

3.4.4 Even and Odd Coherent States:

Next we study the even (|ψ+〉) an the odd (|ψ−〉) superposition of coherent states given by

|ψ±〉 =
1√

2(1± e−2|α|2)
(|α〉 ± | −α〉). (3.17)
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For the sake of simplicity we again consider real displacement. We show the dependence

of NC on α for |ψ±〉 in Fig. 3.4. It is worth noting that for small α (. 1.0), |ψ−〉 is more

nonclassical than |ψ+〉; however, for large α (∼ 1.5) both |ψ±〉 contain almost equal amounts

of NC. This can be explained in the following way. The Husimi-KanoQ distributions for the

even and odd superposition states are given as

Q|ψ±〉(z) =
e−α

2
e−|z|

2

1 + 2e−2α2

(
cosh[2αx] ± cos[2αp]

)
, (3.18)

where, we have rewritten the phase space coordinate z as z = x + ip. In the expression
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Figure 3.4: Plot of Nw vs α for |ψ+〉

(solid line) and |ψ−〉 (dashed line).

of the Q distribution for the
∣∣∣ψ±〉, the second term

in the bracket is a circular function that is bounded

by ±1 while the first term is unbounded. As a con-

sequence, in the large α limit only the first term

dominates while the contribution from the second

term becomes negligible. That is to say that in the

limit α → ∞, the Q distributions for both
∣∣∣ψ±〉 in

Eq. (3.18) reduce to

lim
α→∞

Q|ψ±〉(z)→
e−α

2

1 + 2e−2α2 e
−|z|2 cosh[2αx]. (3.19)

As a consequence, with increase in α, the amount of NC in the states
∣∣∣ψ±〉 tend to become

equal.

3.4.5 Photon Added Squeezed Vacuum State and Squeezed Number State:

Here, we shall evaluate Nw for the photon added squeezed vacuum state (PAS) and the

squeezed number state (SNS). These are given as,

|ψpas〉 =
1
√
Nm

a†mS(r)|0〉

|ψsns〉 = S(r)|m〉, (3.20)

where, Nm =m!µmPn(µ), µ = cosh r and Pn(x) is the nth order Legendre polynomial. Note that

although these states
∣∣∣ψpas

〉
and

∣∣∣ψpas

〉
are quite different, we have considered these together

because they are obtained by the application of squeezing (S(r)) and photon addition (a†m)

operations on the vacuum state in different orders.

In Fig. 3.5 we have plotted the dependence of Nw on r for PAS and SNS. In the case
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Figure 3.5: Plot of Nw vs r for m = 1 (solid

line), 2 (dashed line), 3 (dotted line), 4 (dash

dotted line) and 5 (dash double dotted line)

for (a) PAS and (b) SNS.

of PAS [Fig. 3.5(a)], we observe that Nw is

non-monotonic both on r and m. For m =

1 it increases monotonically with r. How-

ever, for all m ≥ 2, as r increases it first

decreases and then increases. In addition

to that, we also notice that for a moder-

ate r (0.30 ≤ r ≤ 0.60), Nw for higher m

becomes smaller than the lower m. It be-

comes prominent with increase in m. For

very high value of r (& 0.80), Nw becomes

predominantly dependent on r.

In the case of SNS [Fig. 3.5(b)] we observe a monotonic dependence of Nw on both r and

m. For m = 1, both SNS and PAS yield similar NC; however for m ≥ 2 they are different.

This is due to the fact that a†S(r)|0〉 = S(r)|1〉 and for m ≥ 2, states are very much different as

discussed in the previous chapter.

Here, we would like to emphasize that the non-monotonic dependence of the BS gener-

ated entanglement on m with PAS at the input [Fig. 2.5(a)], as is discussed in Sec. 2.4, is

similar to the non-monotonic dependence of the NC of PAS on m [Fig. 3.5(a)]. Moreover,

the monotonicity of entanglement that we observed in the case of SNS [Fig. 2.5(b)] is also

similar to the monotonic dependence of Nw on m in Fig. 3.5(b). Hence, we infer that the

BS generated entanglement depends monotonically on the amount of NC of the input non-

classical states, as measured by Nw, as one would expect. This, therefore establishes Nw as

a good measure of NC of single mode pure states. Recall our discussion in Chapter 2 where we

argued that none of the other known measures of NC served as good measure in this respect.

3.5 Conclusion

In summary, we have proposed a new measure of NC of single mode states based on the

Wehrl entropy. We have verified that in the case of squeezed vacuum state, S(r)|0〉, and

photon number state, |m〉, Nw shows a monotonic dependence on m and r respectively as

one would expect. In the case of states with MNIO as well, viz. S(r)|m〉 and 1√
Nm
a†mS(r)|0〉,

we have demonstrated that Nw plays the role of effective NC measure of the states and the

BS output entanglement in these cases exhibits a monotonic dependence on Nw. Thus our

studies establish that Nw, the measure of NC that we have proposed, is indeed a good measure

of NC for all Gaussian as well as non-Gaussian pure states.
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We would like to remark that our definition of NC measure doesn’t extend to mixed

states. This is because one doesn’t know (unlike in the case of pure states) how to characterize

all classical mixed states. Although, nonclassical depth serves as a good measure in the case

of Gaussian mixed states, the problem of finding a measure of NC that works for all mixed states

is an open one.





Chapter 4
Quantum Teleportation with Beam Splitter

Generated Entangled Non-Gaussian

Resource States

The most commonly used Gaussian entangled quantum optical resource in teleportation is

the two-mode squeezed vacuum state (TMSV) which could be generated in several nonlinear

optical processes [33–35]. However, certain de-Gaussification processes such as photon ad-

dition and subtraction along with their coherent superpositions, quantum catalysis etc. have

been found to improve the amount of entanglement as well as the success of teleportation

compared to TMSV. [94–101]. Dell’Anno et. al. [95] showed that optimized teleportation

could be achieved by tuning entanglement, non-Gaussianity (NG) and squeezed vacuum

affinity (SVA) of the entangled resource state. There has been some discussion in the liter-

ature on what could possibly be the essential ingredients, besides entanglement, to achieve

QT. While Dell’Anno et. al. [95] clearly recognized SVA as such an essential ingredient, later

developments [96,97,99,100] have pointed to the possibility that Einstein-Podolosky-Rosen

(EPR) correlation of the resource states could be a sufficient condition for quantum telepor-

tation (QT). However, Lee et. al. [97] and Wang et. al. [99] have argued that EPR correlation

is not always necessary for QT - for example, the symmetrically photon added TMSV yields

QT even without EPR correlation. Further, Hu et. al. [101] have addressed the question of

whether there could be other attributes of the resource states, besides EPR correlation, that

may be crucial for QT. In this respect they considered the Hillery-Zubairy (HZ) correlation.

However, they concluded that EPR correlation is a better witness of QT than HZ correla-

tion, i.e., there exist resource states that yield QT that are not HZ correlated but are EPR
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correlated.

It may be noted that all the non-Gaussian entangled states considered in earlier works

[94–101] were generated by de-Gaussifying the TMSV. Another way to generate non-Gaussian

entangled states is by using a passive BS with single mode nonclassical non-Gaussian states

at one of the input ports. In chapter 2, we have undertaken a detailed study of the MNIO

class of single mode non-Gaussian states in respect of their nonclassical properties and BS

output entanglement characteristics when these states are used as input.

In this chapter, we would like to investigate the question of what could be the essential

attributes of entangled resource states that contribute to QT, within the context of the BS

generated entangled states with the MNO class of states at one of the input ports. Let’s call

these resource states as BS-MNIO resource states. To this end, we have analyzed several

aspects of the BS-MNIO resource states such as NG, squeezed vacuum affinity (SVA) and

EPR correlation. We observe that while SVA is not non-zero (hence not a genuine attribute)

in a large subset of the BS-MNIO resource states, EPR correlation is found to be not sufficient

for QT. This result, together with that of Lee et. al. [97] and Wang et. al. [99], indicates that

EPR correlation is in general neither necessary nor sufficient for QT.

We propose that U (2)-invariant two-mode quadrature squeezing as defined by Simon

and his co-workers [56] could be an important ingredient for QT. In this connection, we

have carried out numerical studies using two classes of entangled resource states (a) those

generated by de-Gaussifying two-mode squeezed vacuum and (b) the BS-MNIO class of

states. Our results on both these classes of states indicate that U (2)-invariant two-mode

quadrature squeezing could well be necessary to achieve QT. We must point out that except

for the overwhelming numerical evidence we do not have a proof of this assertion in general.

However, by way of a plausibility argument, we provide an analytical proof of this assertion

in the case of a subclass of two-mode Gaussian resource states., viz. the symmetric two-

mode Gaussian states.

4.1 Success of Teleportation: Teleportation Fidelity

In the case of the BK protocol for continuous variable teleportation [84], with TMSV as the

entangled resource, an unknown coherent state from Alice is completely recovered at Bob’s

end at asymptotically large value of squeezing. Note that in this limit, the resource state

attains maximal correlation between quadratures of the individual modes. Consequently,

in the case of entangled quantum optical resource states with non-maximal correlation, the

performance/success of the teleportation is measured in terms of a figure of merit known as
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the fidelity of teleportation (F). It is defined as the overlap between the unknown input

state and the output state (the retrieved state), F = Tr [ρinρout
]. Clearly F = 1 in the case of

TMSV in the infinite squeezing limit.

The evaluation of F becomes particularly simple in the characteristic function (CF) de-

scription [102]. The CF of an n mode quantum optical state ρ is defined as χρ({λi}) =

T r[ρD({λi})] where D({λi}) = Πn
i=1 exp[λia

†
i − λ

∗
iai] is the displacement operator associated

with the ith mode, ai being the corresponding mode operator. For any two-mode state ρAB

as a resource, the fidelity of teleportation of an unknown input state ρin can be expressed in

terms of the CFs as [102],

F =
∫
d2λ
π

χin(−λ) χin(λ) χAB(λ,λ∗), (4.1)

where, χin(λ) and χAB(λ,λ∗) are the CFs of ρin and ρAB respectively. In the case of a coherent
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Figure 4.1: Plot of F vs r for m = 0 (solid line),

1 (dashed line), 2 (dotted line), 3 (dash dotted

line) and 4 (dash double dotted line) with BS

output states generated from input (a) PAS, (b)

PSS and (c) SNS. Long dashed line corresponds

to the value F = 1/2.

state |α〉 as the unknown input state,

Eq. (4.1) simplifies to,

F =
∫
d2λ
π

e−λ
2
χAB(λ,λ∗), (4.2)

Note that the above expression of

F is independent of the input coher-

ent state |α〉. The maximum fidelity

of teleportation of any coherent state

attainable by a separable state in the

BK protocol turns out to be 1/2 [84].

Hence, F > 1
2 indicates QT. In this

chapter, as we shall consider teleporta-

tion of an input coherent state only, the

fidelity of teleportation with entangled

resource ρAB shall always be given by

Eq. (4.2). In Fig 4.1 we plot the de-

pendence of F on the squeeze param-

eter r and the number of photon addi-

tion/subtraction m in the case of non-

Gaussian BS output entangled states

generated from PAS, PSS and SNS. As

is evident from Fig. (4.1), in the case of
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all three resource states, the teleportation fidelity F exhibits a rather complex, in particular

non-monotonic, dependence on the state parameters r and m.

The rest of the chapter is devoted to understanding the various ramifications of the prin-

cipal numerical results reported in Fig. 4.1. In the next few sections we shall assess the

role of various attributes of the resource states, viz. entanglement, NG, squeezed vacuum

affinity (SVA) and EPR correlation on teleportation fidelity in respect of the results in Fig.

4.1. We shall now study quantitative and qualitative aspects of teleportation in the case of

the BS-MNIO class of resource states.

4.2 Attributes of the Resource States I: Entanglement, Non-Gaussianity

and Squeezed Vacuum Affinity

In this section we essentially extend the analysis of Dell’Anno et. al. [95] to BS generated

resource states. It is pertinent to recall here the observation of Dell’Anno et. al. [95], in the

context of resource states generated by certain de-Gaussifications of the TMSV, that in order

to achieve optimal teleportation, one has to tune values of entanglement, NG and SVA of

the resource states. The purpose of this section is to verify if this observation of Dell’Anno

et. al. is borne out in the case of BS generated resource states with |ψpas〉, |ψpss〉 and |ψsns〉 at

the input.

4.2.1 Entanglement and Teleportation Fidelity

In Fig 4.2, we plot the dependence of BS entanglement for different input states. The spe-

cific dependence of EBS(|ψpas〉) [Fig. 4.2(a)] and EBS(|ψsns〉) [Fig. 4.2(c)] on r and m have

already been discussed in detail in chapter 2. Here, we reproduce the figures for EBS(|ψpas〉)

and EBS(|ψsns〉) from chapter 2 for the sake of future discussion. However, the results for

EBS(|ψpss〉) are new and we discuss them in some detail.

In the case of EBS(|ψpss〉) [Fig. 4.2(b)], we find that for small r (≤ 0.40), odd photon

subtracted states [m = 1,3] are more entangled than the even photon subtracted states [m =

2,4]. However, with increase in r, EBS(|ψpss〉) for even photon subtracted states becomes

higher than that for odd photon subtracted states. In general, EBS(|ψpss〉), for all values ofm,

increases monotonically with increase in r.

As it is quite explicit from Fig. 4.1 and Fig. 4.2, the dependence of the fidelity of telepor-

tation on input parameters r and m for different input states is very different from that of

the respective BS output entanglement. In the cases of both PAS, PSS and SNS as input, BS

output entanglement, for all non-zero values of m and r, is always greater than that for the
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input Gaussian single mode squeezed vacuum state (m = 0). However, in the case of telepo-

ration, we observe that F for all input states, except for the case of even PSS in the small r

(. 0.60) limit, is always smaller compared to the case of input squeezed vacuum state for all

non-zero values of m and r.

In the case of even PSS input, in the small r (. 0.30) region, all input odd PSSs yields

more entanglement at the output of BS than the input even PSSs. However, F for all even

PSSs at BS input is greater than all input odd PSSs. These results indicate the well-known

fact that, although entanglement is necessary for QT, increase in entanglement does not always

ensure increase in fidelity of teleportation.
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Figure 4.2: Dependence of EBS on r for m = 0 (solid line), 1 (dashed line), 2 (dotted line), 3

(dashed dotted line) and 4 (dashed double dotted line) for the input states (a) PAS, (b) PSS

and (c) SNS.

4.2.2 Non-Gaussianity and Teleportation Fidelity

In this subsection we study how teleportation fidelity depends on the NG of the BS gener-

ated resource states. Here we consider the Wehrl entropy based measure defined by Ivan

et. al. [67] of NG. For a quantum state of light, described by the density operator ρ, its
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non-Gaussianity is defined in Eq. (1.17) as

NG(ρ) = Hw(ρG) − Hw(ρ), (4.3)

where Hw(ρ) [= −
∫
d2z
π Qρ(z) logQρ(z)] is the Wehrl entropy of ρ defined in terms of the

Husimi-Kano Qρ(z) [= 〈z|ρ|z〉] distribution. Here ρG is the Gaussian counterpart of ρ, i.e.,

the state formed with the first and the second moments equal to those of ρ itself.

It is further shown by Ivan et. al. [67] that, in the case of product state input at any

passive linear system like BS, NG of the output state becomes equal to the sum of NG of the

input states, i.e.,

NG(ρout) = NG

(
UBS (ρa ⊗ ρb) U †

BS

)
= NG(ρa) + NG(ρb), (4.4)

where, UBS is the unitary operation corresponding to the evolution of the input state (ρa⊗ρb)

through BS. In the current work we have considered the cases where one of the input ports

of the BS is fed with single mode non-Gaussian states ρin while the other port is left with

vacuum. Since, vacuum (|0〉) is a Gaussian state with NG(|0〉) = 0, Eq. (4.4) immediately
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Figure 4.3: Plot of NG of the BS output states

vs r for m = 1 (solid line), 2 (dashed line), 3

(dotted line) and 4 (dash dotted line) for input

(a) PAS, (b) PSS and (c) SNS.

implies that the NG of the BS generated

resource states (ρout) is same as the NG of

the corresponding input state ρin.

In Fig. 4.3 we plot NG as a function of

r for different values of m, for the BS out-

put states generated from different input

states. From a comparison of Fig. 4.1 and

Fig. 4.3 that the fidelity of teleportation

(F) does not depend monotonically on the

NG (NG) of the resource states. In the case

of input PAS, NG increases monotonically

with increase in both m and r, while cor-

responding F shows a non-monotonic de-

pendence. In the case of input PSS, while

the odd m states are more non-Gaussian

than the even m states at low r (. 0.30)

limit, F for input even PSSs is always

higher than that for input odd PSSs. Be-

sides, in the case of input SNS, NG shows
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a non-monotonic dependence on r for higher values of m while corresponding F is a mono-

tonically increasing function of r for all values of m.

4.2.3 Squeezed Vacuum Affinity and Teleportation Fidelity

Dell’Anno et. al. [95] identified yet another attribute called squeezed vacuum affinity (η)

that entangled quantum optical resources must possess to achieve QT. For any bipartite

entangled state ρAB, η is defined as its maximal overlap with the TMSV (|ξ(s)〉),

η = max
s
|〈ξ(s)|ρ|ξ(s)〉|2. (4.5)

First, We have analyzed the case of even photon added/subtracted states (m = 0,2,4) at

input of the BS for which the output states have nonzero η. In Fig. 4.4, we have shown the
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Figure 4.4: η for BS output states with

input (a) PAS, (b) PSS and (c) SNS for

m = 0 (solid line), 2 (dashed line) and 4

(dotted line).

dependence of η of the BS generated resource

states for different input states. As evident, in

the case of all input states, η for the BS output

resource states decrease with increase in r for

different values of m. The maximum SVA is

obtained for r = 0 and m = 0 that corresponds

to the vacuum state (|0〉).

However, we have noticed that η becomes

trivially zero in the case of all input states with

odd photon addition/subtraction. This could

be explained in the following way. The state

TMSV has a symmetric expansion in number

state basis |ξ(s)〉 = 1
µs

∑
k τ

k
s |k,k〉, where µs =

coshs and τs = tanhs. Let’s now consider a

bipartite state ρ =
∑
m,n
k,l

Ck,lm,n |m,n〉〈k, l|. The

overlap between |ξ(s)〉 and ρ is given by,

Tr [ρ |ξ(s)〉〈ξ(s)|] =
1
µs

∑
m,n
k,l

Ck,lm,n τ
m+k
s δm,n δk,l

. (4.6)

Evidently, in the case of a bipartite state ρ for which the diagonal elements for all m and

k vanish (e.g., Ck,km,m = 0), SVA is identically zero. Note that a passive BS simply redistributes

the photons in the input modes among the output modes. As a consequence, for all odd
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number (m = 2p+1, p is any positive integer) of photon added/subtracted states at input, BS

output state have diagonal elements identically equal to zero, i.e, Ck,km,m = 0 leading to η = 0.

It is quite clear from Fig. 4.2, 4.3 and 4.4 for entanglement, NG and SVA respectively,

that these attributes do not behave quite the same way as the teleprotation fidelity [Fig.

4.1], as far as their dependence on r and m is concerned. In other words, F depends non-

monotonically on each of these attributes. One can’t achieve a larger value of F merely by

increasing any one of these attributes. Thus, our results in the case of those BS generated

resource states for which SVA is non-zero are consistent with those of Dell’Anno et. al. [95]

in the case of de-Gaussified two-mode squeezed vacuum states.

4.3 Attributes of the Resource States II: Einstein-Podolsky-Rosen Corre-

lation

In recent years, besides entanglement, Einstein-Podolsky-Rosen (EPR) correlation [71] of

the two-mode resource states have been found to be an important ingredient in achieving

QT [96, 100, 101]. However, Lee et. al. [97] and Wang et. al. [99] have have pointed to

examples of states that yield QT even without EPR correlation. In this section, we study this

attribute in the case of BS generated non-Gaussian entangled resource states.

In the seminal paper on completeness of quantum mechanics [1], Einstein, Podolsky and

Rosen proposed an ideal bipartite state which is a common eigenstate of the relative position

and total momentum of the subsystems. In the case of any two-mode quantum optical state

one can define an EPR correlation parameter known as EPR uncertainty ∆EPR [71] as

∆EPR = 〈(∆(XA −XB))2〉+ 〈(∆(PA + PB))2〉

= 2
(
[1 + 〈A†A〉+ 〈B†B〉 − 〈A†B†〉 − 〈AB〉] [〈A†〉 − 〈B〉][〈A〉 − 〈B†〉]

)
, (4.7)

where, the quadrature operators {XA, PA,XB, PB} are defined as XA = 1√
2
(A+A†), PA = 1

i
√

2
(A−

A†), XB = 1√
2
(B+B†) and PB = 1

i
√

2
(B−B†). EPR uncertainty (∆EPR) being zero indicates perfect

correlation between the modes. The correlated state considered by Einstein et. al. which is

known as the EPR state [103], could be realized in terms of TMSV in the limit of infinite

squeezing strength (r→∞). In the case of two-mode states with ∆EPR > 0, smaller the value

of ∆EPR more correlated the modes are. Further, as shown by Duan et. al. [71] ∆EPR < 2

indicates that the two-mode state is entangled.

In this section, we evaluate EPR correlation for the BS generated entangled resources for

the different input non-Gaussian states we have considered in this paper. Using the trans-

formation matrix for a 50:50 BS [Eq. (2.1)], ∆EPR [Eq. (4.7)] for the BS generated resource
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states can be expressed in terms of the input mode operators as,

∆EPR = 2
(
1 + 〈a†a〉+ 〈b†b〉 − 〈a†〉〈a〉 − 〈b†〉〈b〉

)
−(

〈a†2〉+ 〈a2〉 − 〈a†〉2 − 〈a〉2
)
−

(
〈b†2〉+ 〈b2〉 − 〈b†〉2 − 〈b〉2

)
. (4.8)

We have considered single mode nonclassical states at one of the input ports (say mode

a) while other port (mode b) is left in the vacuum state. This leads to 〈b〉 = 〈b†〉 = 〈b2〉 =

〈b†2〉 = 〈b†b〉 = 0. Besides, for the input nonclassical states we have considered, 〈a〉 = 〈a†〉 = 0

and 〈a2〉 = 〈a†2〉. With these results, EPR uncertainty for the BS output states [Eq. (4.8)]

reduces to,

∆EPR = 2
(
1 + 〈a†a〉 − 〈a2〉

)
. (4.9)

We denote the ∆EPR in the case of input state |ψ〉 as ∆EPR(|ψ〉). Using the expression of

Eq. 4.9, we find the analytic forms of the ∆EPR, for input PAS, PSS and SNS as,

∆EPR(|ψpas〉) = 2
[Nm+1

pas

Nm
pas

+
µ2m(m+ 2)!

Nm
pas

(µν
2

) m∑
k=0

(
m
k

) (−ν
2µ

)k Hk(0)Hk+2(0)
(k + 2)!

]
, (4.10a)

∆EPR(|ψpss〉) = 2
[
1 +

Nm+1
pss

Nm
pss

+
ν2m(m+ 2)!

Nm
pss

(µν
2

) m∑
k=0

(
m
k

) (−µ
2ν

)k Hk(0)Hk+2(0)
(k + 2)!

]
, (4.10b)

∆EPR(|ψsns〉) = 2
[
1 +m(µ− ν)2 − ν(µ− ν)

]
, (4.10c)

where, µ = coshr, ν = sinhr and Hn(x) is the nth order Hermite polynomial. The expression(m
k

)
is the binomial coefficient and the normalization constants Nm

pas and Nm
pss are defined in

Eq. (2.6).

In Fig. 4.5 we have plotted ∆EPR as a function of r for various values of m for the BS

output states, generated from the input single mode states. It is evident from a comparison

of Fig. 4.1 for the teleportation fidelity and Fig. 4.5 for the EPR correlation in the case of BS

generated resource states with either of the |ψpas〉, |ψpss〉 and |ψsns〉, that there exist regions of

r where resource states are EPR correlated (∆EPR < 2) yet they don’t yield QT (F > 1/2). This

leads to the conclusion that EPR correlation is not sufficient for QT. Further, as shown by Lee

et. al. [97] and Wang et. al. [99] in the case of non-Gaussian entangled states, in particular

the asymmetrically photon added TMSV, QT can be achieved even when the resource state

is not EPR correlated, i.e. ∆EPR > 2. Thus, in view of our results together with the results

of [97,99], we conclude that EPR correlation is, in general, neither necessary nor sufficient for

QT.

Let us summarize our analysis of the various attributes of the resource states so far. The

results of Sec. 4.2 lead us to conclude that SVA, as it is not non-zero in general and in
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particular in the case of BS generated resource states, it cannot be regarded as an essential

attribute of resource states for QT. Moreover, when it is non-zero it is not even sufficient.

Further, the results obtained in this section make it clear that EPR correlation as an attribute

of resource states is neither necessary nor sufficient. In the backdrop of these results, the

question of what other attributes of the resource states, besides entanglement, play an essential

role in QT remains open.
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Figure 4.5: Dependence of ∆EPR on r for differentm = 0 (solid line), 1 (dashed line), 2 (dotted

line), 3 (dash dotted line) and 4 (dash double dotted line) for input (a) PAS, (b) PSS and (c)

SNS. The long dashed line corresponds to ∆EPR = 2.0.

4.4 Attributes of the Resource States III: Two-mode Quadrature Squeez-

ing

In this section we analyze yet another attribute of resource states that has not been consid-

ered in the literature in the context of QT, namely the U (2)-invariant two-mode quadrature

squeezing as defined by Simon et. al. [56, 57]. Here we focus on examining the role of this

attribute in the context of QT.
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4.4.1 U(n)-invariant Squeezing Criterion

As we have mentioned in Chap. 1, the condition for a single mode quantum optical states to

be squeezed is that the minimum eigenvalue of the variance matrix be less than 1/2. How-

ever, it is not straightforward to extend such a characterization of squeezing to the multi-

mode case. U (n)-invariant quadrature squeezing criterion for an n-mode system defined in

terms of a 2n×2n real symmetric matrix known as the variance matirx, was given by Simon

et. al. [56, 57]. We shall briefly describe below this criterion in the case of n = 2, as our

interest is in squeezing properties of BS output states that are 2-mode states.

Let’s consider an 2-mode quantum state of light ρ with mode annihilation operators ak

[k = 1,2] satisfying the commutation relations,

[ak , a
†
l ] = δk,l and

[ak , al] = [a†k , a
†
l ] = 0. (4.11)

In terms of the quadrature components, namely xk = 1√
2
(ak + a†k) and pk = 1

i
√

2
(ak − a†k)

(k = 1,2), one can define a column vector as R = (x1 p1 x2 p2)T, where "T" stands for trans-

position. The variance matrix of a two-mode state ρ can be written in a compact form

as Vk,l = 1
2 Tr[ρ{∆Rk,∆Rl}], where ∆Rk = Rk − Tr[ρRk]. Here, {A,B} stands for the anti-

commutator of the operators A and B. The state ρ is said to be n-mode quadrature squeezed

if

λmin <
1
2
, (4.12)

where, λmin is the least eigenvalue of the 4× 4 variance matrix V [56] associated with state

ρ. Accordingly, the degree of quadrature squeezing is defined as,

fsq =
1

√
2λmin

, (4.13)

and it follows from Eq. 4.12 that the state is said to be quadrature squeezed if fsq > 1.

4.4.2 U(2)-invariant Squeezing for BS Generated Resource States

Using the relation between variance matrices of the input and output state of a BS, it is easy

to show (Appendix C) that λmin for the BS output states is given by, λmin = min[1/2,∆Q],

where, ∆Q is the value of the uncertainty of the squeezed quadrature of the input state.

In Fig. 4.6 we show the dependence of fsq on r for the BS output two-mode states gener-

ated from input PAS, PSS and SNS. In the case of input PAS [Fig. 4.6(a)], fsq, for all m ≥ 1,

becomes greater than unity beyond a moderate squeezing strength (r & 0.60). However,
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these states yield QT (F > 1/2) for higher r. In comparison to the results on F [Fig. 4.1(a)], it

explains the absence of QT below r ∼ 0.60.

In the case of input PSS, all the even photon subtracted states [m = 2, 4] as well as no
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Figure 4.6: Plot of fsq vs r for different m = 0

(solid line), 1 (dashed line), 2 (dotted line),

3 (dashed dotted line) and 4 (dashed double

dotted line) input (a) PAS, (b) PSS and (c)

SNS.

photon subtracted state [m = 0] possess

two-mode quadrature squeezing (fsq >

1.0) [Fig. 4.6(b)] for all values of r. How-

ever, all the odd photon subtracted states

attain fsq > 1.0 for higher values of r. In

comparison to the corresponding results

on F [Fig. 4.1(b)], it is clear that the

states, we consider here, yield quantum

teleportation provided they possess two-

mode quadrature squeezing.

In the case of input SNS, we observe

that fsq [Fig. 4.6(c)] for m , 0 becomes

greater than unity for high values of r.

The threshold value of r for two-mode

squeezing (fsq > 1.0) increases with the in-

crease in m. In the case of corresponding

results on F [Fig. 4.1(c)] also, we notice

that for m , 0 states quantum teleporta-

tion (F > 1/2) is attained for higher values

of r.

It is worth noting that all the BS output resource states that we have considered attain

two-mode quadrature squeezing, depending upon the value of m, beyond a certain value of

squeeze parameter r. This could be explained in the following manner. Using the relation

between the variance of matrix of the state at input of the BS and that of the output state, it

can be easily shown (Appendix C) that the output state is quadrature squeezed if and only

if the input single mode is quadrature squeezed. Since, the input single mode states become

quadrature squeezed (fsq > 1) beyond a moderate value of squeeze parameter r, depending

upon the value of m, the same is reflected in the quadrature squeezing of the output states.

The numerical results obtained on the two-mode U (2)-invariant quadrature squeezing,

in the case of BS output states with different input nonclassical states, indicate that the

two-mode U (2)-invariant quadrature squeezing might be a necessary condition to obtain



Attributes of the Resource States III: Two-mode Quadrature Squeezing 47

quantum teleportation. In this context, we next analyze our observation in the case of the

two-mode non-Gaussian entangled states of light considered by Dell’Anno et. al. [95].

4.4.3 U (2)-invariant squeezing for states considered by Dell’Anno et. al.

Let’s denote the states considered in [95] by,

|ψTMSV〉 = Sa,b(r)|0,0〉, (4.14a)

|ψtmpa〉 =
1
N+
a†b†Sa,b(r)|0,0〉, (4.14b)

|ψtmps〉 =
1
N−
abSa,b(r)|0,0〉, (4.14c)

|ψtmsn〉 = Sa,b(r)|1,1〉, (4.14d)

where, Sa,b(r) = er(a
†b†−ab), N+ and N− are the normalization constants. We have obtained

analytic expressions for λmin for the states [Eq. (4.14a), (4.14b), (4.14c) and (4.14d)] as,

λmin

(
|ψTMSV〉

)
=

1
2
− ν(µ− ν),

λmin

(
|ψtmpa〉

)
=

1
2

+ (1− τ)(1− 3τ + τ2 − τ3),

λmin

(
|ψtmps〉

)
=

1
2
− 2τ(1− τ)(1− τ + τ2),

λmin

(
|ψtmsn〉

)
=

1
2

+ (µ− 2ν)(µ− ν), (4.15)

where, µ = coshr, ν = sinhr and τ = tanhr. The degree of squeezing for the states, then,
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Figure 4.7: Plot of fsq vs r for TMSV (solid

line), |ψtmpa〉 (dashed line), |ψtmps〉 (dotted

line) and |ψtmsn〉 (dash dotted line). Horizon-

tal dashed double dotted line corresponds to

fsq = 1.

is calculated using Eq. (4.13). In Fig. 4.7,

we plot the dependence of the degree of

two-mode quadrature squeezing (fsq), for

states given in Eq. (4.14b), (4.14c) and

(4.14d), on the squeezing strength r. We

also plot, in the same figure, fsq for TMSV

as reference.

The degree of squeezing (fsq) for

TMSV is found to be always greater than

unity for all non-zero values of r and in-

creases monotonically with r. In the case

of |ψtmpa〉, we notice that the state shows

two-mode squeezing (fsq > 1.0) beyond

r ∼ 0.30. However, it leads to quantum teleportation for higher r values [95]. In the case

of |ψtmps〉, we observe the presence of two-mode squeezing for all values of r which falls in
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line with the curve for corresponding teleportation fidelity [95]. It is worth noting that for a

small squeeze parameter (r . 0.65), photon subtracted TMSV is more two-mode quadrature

squeezed than the TMSV whereas opposite is the case for higher r (& 0.70). In the case of

|ψtmsn〉 we find the dependence of fsq on r very similar to the case of |ψtmpa〉.

From a comparison of the 2-mode squeezing plots (Fig. 4.6) and the teleportation fidelity

plots (Fig. 4.1), one can see that there is a parameter region of r where the resource states

are 2-mode squeezed (fsq > 1), however they do not lead to QT, i.e., F > 1/2. However, in

all regions of r where F > 1/2 (Fig. 4.1) it turns out that fsq > 1 (Fig. 4.6). Hence, two-

mode quadrature squeezing appears to be necessary for QT but not sufficient. Thus a close

examination of the numerical results on fsq for the BS-MNIO resource states that we have

considered here as well as the states considered by Dell’Anno et. al. [95], indicates that two-

mode quadrature squeezing is necessary for QT. However, as we have noted earlier, two-mode

quadrature squeezing is not a sufficient condition.

In summary, our numerical studies on various non-Gaussian resource states lead us to

the conclusion that two-modeU (2)-invariant squeezing could be a necessary condition for QT,

in general. In this connection, we next analyze U (2)-invariant squeezing in the context of

quantum teleportation with symmetric Gaussian entangled resource states. In fact, it turns

out (as we show analytically in the next subsection) that in the case of symmetric Gaussian

states, two-mode quadrature squeezing is indeed necessary and sufficient for QT.

4.4.4 U (2)-invariant Squeezing for Quantum Teleportation with Symmetric Gaussian

Resource States

Let’s consider a symmetric Gaussian state, that without less of generality, is given by the

two-mode variance matrix V of the form,

V =



η 0 c 0

0 η 0 −c

c 0 η 0

0 −c 0 η


. (4.16)

The necessary condition on V (set by the uncertainty relation) to be a bona fide quan-

tum variance matrix is that its symplectic eigenvalues [56] (κi , i = 1,2) (elements in the

Williamson’s diagonal form) must be no less than 1/2, i.e. κi ≥ 1/2. These, symplectic eigen-

values are obtained as the ordinary eigenvalues of the matrix iVΩ, where,

Ω =

J 0

0 J

 ; J =

 0 1

−1 0

 . (4.17)
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The condition κi ≥ 1/2, for the variance matrix V [Eq. 4.16] leads to the condition on the

elements of V , √
(η + c)(η − c) ≥ 1/2. (4.18)

According to the condition of two-mode quadrature squeezing as defined by Simon et.

al. [56], the variance matrix V is said to be quadrature squeezed if its "least eigenvalue"

becomes less than 1/2. For the variance matrix V given in Eq. 4.16, its eigenvalues are

l = η ± c. Evidently, the condition of two-mode quadrature squeezing for V yields

η − c < 1/2. (4.19)

Let’s now look at the teleportation of the coherent state with the Gaussian resource states.

For any Gaussian entangled resource state with variance matrix V =

 A C

CT B

, where, A, C

and B are 2×2 matrices, the fidelity of teleportation of a coherent state (Eq. 4.2) is given by

Pirandola et. al. [90] as,

F =
1√

det[M ]
, (4.20)

where, M = A − {σz,C} + σz B σz + I . σz is the Pauli spin matrix, σz =

1 0

0 −1

.

For the symmetric Gaussian states with variance matrix given in Eq. 4.16, we have

B = A = diag(η,η) and C = CT = diag(c,−c). This leads to M = diag(1+2η − c,1+2η − c)

with det[M ] = (1 + 2η − c)2. Now the condition of QT, i.e., F > 1/2, leads to,√
det[M ] ≤ 2 ⇒ η − c ≤ 1/2. (4.21)

Evidently, the condition for quantum teleportation (Eq. 4.21) and the condition for

quadrature squeezing (Eq. 4.19), in the case of entangled symmetric Gaussian resource

state turns out to be identical. This implies that the U (2)-invariant quadrature squeezing

is a necessary condition for QT with symmetric Gaussian resource states. Further it im-

plies that, in this particular case, it is also sufficient. However, we would like to point out

that U (2)-invariant quadrature squeezing is not sufficient in the case of Gaussian resource

states in general. While numerical evidence suggests (not reported in the thesis) that U (2)-

invariant two-mode squeezing is necessary for QT in the case of Gaussian states in general

it would be nice to have an analytical proof of such a result.

However, in view of the result for the symmetric Gaussian states obtained above, that

two-mode quadrature squeezing is necessary and sufficient for QT, it is plausible that in the

case of non-Gaussian entangled resource states as well two-mode quadrature squeezing could
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be necessary for QT. We do recognize that we cannot draw too definite conclusions based on

our analytical results because of the following two reasons: (a) entanglement by itself is

known to be necessary and sufficient for QT in the case of symmetric two-mode Gaussian

states and (b) qualitative results on Gaussian states do not always extend to non-Gaussian

states.

4.5 Discussion and Conclusion

In summary, we have studied QT with the non-Gaussian resource states under BS action

with the MNIO class of single mode states those are generated under MNIO, viz., the photon

added squeezed vacuum state, the photon subtracted squeezed vacuum state and squeezed

number state, at one of the input ports. We have extended the analysis of Dell’Anno et.

al. [95] to these BS generated non-Gaussian resource states and studied in detail the de-

pendence of QT on entanglement, NG and SVA. Consistent with the results of Dell’Anno

et. al., we have found that the teleportation fidelity doesn’t depend monotonically on either

of these properties but one has to tune the values of these to achieve optimal QT fidelity.

Moreover, we have found that SVA is, in general, not non-zero for all resource states. In

particular, it turns out to be zero in most of the cases for the class of states that we have

considered.

We have also examined the EPR correlation of the resource states in order to understand

the results of quantum teleportation, obtained in this chapter. While the fact that EPR

correlation is not necessary for QT has been known in the literature [97, 99], numerical

results on our class of states indicate that it is not also sufficient. We, have investigated

the question of whether two-mode U (2)-invariant squeezing for the BS generated resource

states could be necessary/sufficient for QT. Our numerical results on the BS generated non-

Gaussian resource states as well as the de-Gaussified TMSV states show that the two-mode

U (2)-invariant squeezing is in fact necessary for QT. this leads us to the conclusion that two-

mode squeezing could be a necessary condition for QT in general. To argue that this is a

plausible conclusion we have given an analytical proof, in the case of symmetric Gaussian

resource states, that U (2)-invariant two-mode quadrature squeezing is indeed necessary and

sufficient for QT.



Chapter 5
Aspects of Conversion of Nonclassicality

into Entanglement using Beam Splitters

It is well known that a passive BS converts input single mode NC into output two-mode

entanglement [13,16]. In Chapters 2 and 3 we have undertaken a detailed quantitative study

of how BS output entanglement depends on input NC. Another important question one may

ask, from a quantitative perspective, is to what extent the input NC is used up to generate

entanglement at the output of a BS. In a recent work, Ge et. al. [104] have shown, in the

context of Gaussian states, that a passive BS doesn’t convert the entire input NC into output

entanglement. Only a part of the input NC is used up to convert to entanglement while the

reduced states at the output ports of the BS carry residual NC. They have further obtained

a conservation relation between the input single mode NC, the BS output entanglement and

the residual nonclassicalities at the two output ports. As measures of NC and entanglement,

they have considered nonclassical depth and logarithmic negativity respectively.

The purpose of the present chapter is three-fold. First, we revisit the analysis of Ge et.

al. [104] on the relation between BS output entanglement and the NC of the states at input

and output ports, by using a different measure of entanglement, namely, the entanglement

of formation [77], in contrast to logarithmic negativity that they have used. Our analysis

confirms the conclusion of Ge et. al. that the difference between NCs of input and output

modes is, indeed, a measure of entanglement generated by the BS. Thereafter, we attempt

to examine the conversion of NC into entanglement in the context of non-Gaussian states.

A few points worth noting here: (a) unlike in the case of Gaussian states, the NC of non-

Gaussian states is not determined by squeezing alone, (b) even if the input nonclassical

state is pure, the reduced states at the output modes of the BS are mixed, in general and



52 NC-Entanglement Conservation Relation for Gaussian States

(c) we have argued in Chapter 2, there is no known measure of NC of single mode non-

Gaussian states at present. In Chapter 3 we have proposed a Wehrl entropy based measure

of NC for pure states that works well for non-Gaussian states also. However, our measure

can’t be extended to the non-Gaussian mixed states. In view of this handicap, we choose

to focus on the limited question of how certain characteristics of NC such as squeezing and

antibunching are used by the BS to convert to entanglement.

Lastly, we examine the problem of conversion of NC into entanglement in the most gen-

eral setting of multiple BSs. Specifically, we investigate the question of how and to what

extent one may be able to spatially distribute entanglement using an assembly of BSs and

other linear optical elements (if necessary).

5.1 NC-Entanglement Conservation Relation for Gaussian States

We begin by motivating a definition of a measure of NC for Gaussian states. For this purpose

the following result is useful.

Statement: A single mode Gaussian state is nonclassical if and only if it is squeezed.

This is easily inferred from the well-known result that a general single mode Gaus-

sian state can always be represented as a displaced squeezed thermal state [54]. In other

words, given a Gaussian Wigner distribution, its variance matrix elements can always be

parametrized in terms of a complex squeezing parameter ζ and a thermal parameter n̄. Any

single mode Gaussian state can be written as a squeezed thermal state [54], i.e., ρG = S(ζ)

ρth(n̄) S†(ζ), where ζ = r eiφ with r and φ being the squeeze parameter and the direction of

squeezing. It is well-known that ρG is nonclassical if r > 1
2 ln [2n̄ + 1]. Here, the displace-

ment in the expression of a general single mode Gaussian state as pointed out in [54] could

be ignored without any loss of generality. Clearly then, the NC of a single mode Gaussian

state is contained entirely in its squeezing character, as squeezing is the only NC-inducing

operation that is involved.

Consequently, one can quantify the NC of a Gaussian state by the amount of squeezing

in it, or equivalently by the minimum eigenvalue of its variance matrix of the state. This is

what justifies our use of the measure of NC given by

NC(ρ) = min
{

0,
1
2
− λmin

(
V(ρ)

) }
, (5.1)

earlier proposed in Eq. (3.4) of Chapter 3 in the context of Gaussian pure states from totally

different considerations. Note that nonclassical depth [48] evaluated for a Gaussian state

by Ge et. al. [104], in fact, reduces to the formula in Eq. (5.1). It is interesting that the NC
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measure in Eq. (5.1) we have put forward as an extension of Eq. (1.6) in Chapter 3 to general

Gaussian states agrees with nonclassical depth. Evidently, at the root of this agreement is

the fact that NC of a single mode Gaussian state is determined by its squeezing character

alone.

Let’s consider a single mode nonclassical Gaussian state input at one of the input ports of

a 50 : 50 BS while the other port is in the vacuum state. Given that the input Gaussian state

is nonclassical, i.e., quadrature squeezed, the BS output is a two-mode Gaussian entangled

state determined entirely by its two-mode variance matrix. The input variance matrix V in

in our case is given by V in =

σ 0

0 I
2

, where σ denotes the 2×2 variance matrix of the input

Gaussian state and I is the 2 identity matrix. The matrix I
2 is the variance matrix of the

vacuum state at the other port. The 4 × 4 variance matrix of the BS output state (V out) is

related to the variance matrix V in of the input state by

V out = S V in ST =
1
2

 σ + 1
2I −σ + 1

2I

−σ + 1
2I σ + 1

2I

 , (5.2)

where, S is the 4× 4 symplectic transformation given by (Appendix C)

S =
1
√

2

 I I

−I I

 . (5.3)

The states at the two output ports of the BS are given by the reduced density operators,

ρout,1 = Tr2 [ρout] and ρout,2 = Tr1 [ρout]. The output mode states are characterized by the

2× 2 variance matrices

V out,1 = V out,2 =
1
2

(σ +
I
2

) =
1
2

 σ11 + 1
2 −σ12 + 1

2

−σ12 + 1
2 σ22 + 1

2

 . (5.4)

The minimum eigenvalue of the output mode states are found to be

λmin

(
V out,1

)
= λmin

(
V out,2

)
=

1
2

(1
2

+ lmin

)
, (5.5)

where, lmin is the minimum eigenvalue of σ . If one measures NC of the Gaussian states by

nonclassical depth which is the same as the formula given in Eq. (5.1), then the nonclassical

depth of one of the output modes, on using Eq. (5.5), is given by

NCout,1 =
1
2
− λmin

(
Vout,1

)
=

1
2

(1
2
− lmin

)
. (5.6)

As V out,1 = V out,2, it leads to the result NCout,1 = NCout,2. On the other hand, NC of

the input mode state is NCin,1 = 1
2 − lmin, whereas the NC of the vacuum state at the other
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port is zero. Thus if one uses nonclassical depth as a measure of NC for input and output

modes then, as follows immediately from Eq. (5.1) and Eq. (5.6) that

NCin,1 + NCin,2 = NCout,1 + NCout,2, (5.7)

implying that total input NC is equal to total output NC. This result derive d by Ge et. al. is

counterintuitive as the above relation fails to account for the fact that some input NC may

be used up by BS to generate entanglement. However, as suggested by Ge et. al. [104], if one

uses a modified measure of NC instead, namely,

LNC(ρ) = − ln
[
2λmin

(
V(ρ)

)]
, (5.8)

then one finds the relation

LNCin,1 + LNCin,2 = LNCout,1 + LNCout,2 + SN, (5.9)

where, SN , as argued by Ge et. al. [104], measures the amount of entanglement generated

by the BS and is given by

SN = ln
[λmin(V out,1) λmin(V out,2)
λmin(V in,1) λmin(V out,2)

]
= 2 ln

[1 + 2 lmin

2
√

2 lmin

]
. (5.10)

Clearly, SN > 0 whenever 2 lmin < 1, i.e., the input Gaussian state is squeezed (hence

nonclassical). The reason why Ge et. al. [104] found it compelling to regard SN as a measure

of BS output entanglement is because it not merely resembles the formula for logarith-

mic negativity, a well-known entanglement monotone [78], but, as they have numerically

demonstrated, both SN as well as the logarithmic negativity of the BS output state increase

monotonically with input NC.

5.1.1 NC-Entanglement Conservation Relation with reference to Entanglement of For-

mation (EOF)

In this section, we would like to reexamine the conservation relation mentioned above using

a different measure of entanglement, namely, the Entanglement of Formation (EOF) for two-

mode symmetric Gaussian states [77]. It is pertinent to note here that in the case of a 50 : 50

BS, when a NC state is input at one port and the other port is left with vacuum, the BS

output state is always symmetric.

The EOF of a two-mode symmetric Gaussian state is, in fact, the same as as that of a

suitably defined two-mode correlated squeezed state
∣∣∣ψsq

AB

〉
= SAB(r∆) |0,0〉 and is given by

[77]

EOF(ρAB) = µ2
∆ ln µ2

∆ − ν
2
∆ ln ν2

∆, , (5.11)
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where µ∆ = cosh r∆ and ν = sinh r∆. The effective squeeze parameter r∆ is given by

r∆ = −1
2

ln ∆, (5.12)

where ∆ is defined in terms of ∆EPR (Eq. 4.7), the EPR uncertainty of ρG
AB, as

∆ = min
{
1,

1
2
∆EPR

}
. (5.13)

It can be easily shown that the EPR uncertainty for the BS output two-mode entan-

gled Gaussian state, generated from the single mode nonclassical Gaussian state ρG (with

2 lmin < 1), is given by ∆EPR = 1 + 2 lmin. This leads us to the result

r∆ = −1
2

ln
[
min

{
1,

1
2

(1 + 2 lmin)
}]

= −1
2

ln [
1 + 2 lmin

2
]. (5.14)

With the choice of r∆ (Eq. 5.14), it can be shown by a straightforward calculation that

the values of µ∆ and ν∆ are given by

µ∆ =
1
2

3 + 2 lmin√
2(1 + 2 lmin)

, ν∆ =
1
2

1 − 2 lmin√
2(1 + 2 lmin)

. (5.15)

On substituting the values of µ∆ and ν∆ from Eq. (5.15) in Eq. (5.11) we obtain an

analytic expression of the entanglement of formation for the BS output Gaussian state as

EOF(ρout) =
1

4(1 + 2 lmin)

{
(3 + 2 lmin)2 ln (3 + 2 lmin) − (1 − 2 lmin)2 ln (1 − 2 lmin)

}
− ln (1 + 2 lmin) − 2 ln 2

√
2. (5.16)

For a comparison with the work of Ge et. al. [104], we have plotted in Fig. 5.1 the

difference of input and output NCs, SN , the logarithmic negativity EN and the entanglement

 0.5

 1

 1.5

 2

 10  20  30  40
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1/ lmin

Figure 5.1: Dependence of SN (solid

line), EN (dashed line) and EOF(ρout)

(dotted line) on 1
lmin .

of formation EOF as a function of 1
lmin

. From Eq.

(5.1) it is clear that as 1
lmin

increases the nonclassi-

cal depth increases and hence 1
lmin

could be taken

as a measure of NC for a Gaussian state. It is clear

from the Fig. 5.1 that very much like EN , EOF too

is a monotonically increasing function of 1
lmin

. Thus

our work corroborates the conclusion of Ge et. al.

that SN is, indeed, a measure of BS output entan-

glement, and thus satisfies the conservation rela-

tion stated in Eq. (5.9). In fact, one can analytically

show that EOF is a monotonically increasing function of 1
lmin

. It turns out that

∂ EOF(ρout)
∂ (1/lmin)

=
l2min(3 + 2 lmin)(1 − 2 lmin)

2(1 + 2 lmin)2 ln
(3 + 2 lmin

1 − 2 lmin

)
. (5.17)
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Clearly, the right hand side in Eq. (5.17) is greater than for 2 lmin < 1 implying that EOF

is a monotonically increasing function of 1/lmin. In fact, one can go a step further and show

analytically that EOF is a monotonically increasing function of SN . In view of the expression

of SN (Eq. 5.10), it turns out that

∂ EOF(ρG
out)

∂ SN
=
∂ EOF(ρG

AB)
∂ lmin

· ∂ lmin

∂ SN

=
lmin(3 + 2 lmin)

2(1 + 2 lmin)
ln

(3 + 2 lmin

1 − 2 lmin

)
. (5.18)

Again the right hand side in Eq. (5.18) is greater than for 2 lmin < 1 implying that EOF

is a monotonically increasing function of SN . For the sake of illustration, we have looked

at the dependence of EOF of the BS output state on SN in the case of input state being

squeezed vacuum state,
∣∣∣ψsv

〉
= S(r) |0〉, where, S(r) = e

r
2 (a†2−a2). The input variance matrix

for
∣∣∣ψsv

〉
is given by σsv = diag (e2r/2, e−2r/2) for which lmin = e−2r

2 . In Fig. 5.2 we show

the dependence of entanglement of formation of the BS output state on SN, the difference
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EOF(ρ
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)
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Figure 5.2: Plot of EOF(ρout) vs SN for input∣∣∣ψsv
〉
.

between total input and total output NCs,

in the case of
∣∣∣ψsv

〉
as input. As is evident

from the Fig. 5.2, output entanglement is

a monotonic function of the difference be-

tween input and output NCs.

So far we have analyzed the conserva-

tion relation between total input NC, total

output NC and the BS generated entangle-

ment, in the case of Gaussian states, in line with the work done by Ge et. al. [104]. We have

seen that, even with a different measure of entanglement, namely EOF instead of the loga-

rithmic negativity considered in [104], the BS output entanglement is found to be a mono-

tonically increasing function of the difference between total input and output NCs. This, in

other words, reaffirms the conclusion that a passive BS uses only a part of the input NC to

yield entanglement at the output; the rest of input NC is carried by the reduced states at the

BS output ports.

5.2 On Conversion of Input NC into BS Output Entanglement: The non-

Gaussian Case

In the previous section, we have considered the quantitative aspects of conversion of input

NC into BS output entanglement in the case of Gaussian states. In particular we have revis-
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ited the conservation relation between NC of Gaussian states at input and output ports and

BS generated entanglement, studied earlier by Ge et. al. [104].

Our broad aim in this section is to extend the results of the previous section to non-

Gaussian states. However, as we have remarked at the beginning of the present chapter,

we are handicapped by the fact that there is no known measure of NC for non-Gaussian

mixed states. It is worth recalling here that the NC of a Gaussian state is contained entirely

in its squeezing character. Thus, the problem of conversion of input NC into BS output

entanglement in the case of Gaussian states is effectively that of the conversion of input

squeezing into entanglement. On the other hand, the NC of a non-Gaussian state is con-

tained, in general, not only in its squeezing character but also in other characteristics such

as sub-Poissonian character, higher order squeezing etc. Thus, as far as the question of con-

version of input NC into BS output entanglement is concerned, for non-Gaussian states, all

of the above -mentioned quantifications of NC based on the lower-ordered moments of the

mode creation and annihilation operators are likely to play a role. Here, we take a prag-

matic approach and address the limited question of how only two aspects of NC, namely,

squeezing and sub-Poissonian character, contribute towards the conversion of input NC into

entanglement at the BS output.

As quadrature squeezing in any state is determined by how small the minimum eigen-

value of the variance matrix is compared to 1
2 , the results on the Gaussian states from the

previous subsection will be immediately applicable here. In order to evaluate squeezing for

the non-Gaussian states, it is sufficient to compute the lmin for the corresponding Gaussian

counterparts, i.e., the states having the same first and second order moments.

On the other hand, sub-Poissonian character of any state is defined in terms of the Man-

del Q parameter given by (Eq. 1.5)

Q =
〈N 2〉 − 〈N 〉2

〈N 〉
− 1, (5.19)

where, N = a†a is the number operator. Note that more negative Q is, more sub-Poissonian

the state is, and hence more nonclassical. It can be shown by a straightforward calculation

(Appendix D) that theQ parameter of the reduced output state is half times the Q parameter

of the input state ρ, i.e.,

Qout,1 = Qout,2 =
Q
2
, (5.20)

where, Qout,i (i = 1,2) is the Q parameter of the reduced state at the ith mode. The Q pa-

rameter of the reduced output state is less than that of the input state (in fact exactly half)
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implying that the reduced output state is less sub-Poissonian as some of this aspect of NC

has been used to generate entanglement.

Let’s compare the change in the sub-Poissonian and the quadrature squeezing characters

of the input state under BS evolution. It is convenient to define the fractional change in the

squeezing as

ηsq =
lmin − λmin(V out,1)

lmin
. (5.21)

From Eq. (5.5) the value of ηsq is found to be ηsq = 1
2

(
1 − 1

2 lmin

)
. Clearly, as lmin becomes

smaller compared to 1
2 , ηsq becomes more negative implying that squeezing in the output

modes is less than that in the input, as some of it has been used up to generate entanglement.

One can similarly define a fractional change in sub-Poissonian character as

ηQ =
Q − Qout,1

Q
, (5.22)

which from Eq. (5.20) turn out to have the value ηQ = 1
2 .

As is evident from the Eq. (5.21) and Eq. (5.22), the relative change in the Q parameter

is more than that in lmin, i.e.,

ηQ − ηsq =
1

4 lmin
> 0. (5.23)

This indicates that, under BS transformation, sub-Poissonian character decreases faster

than the quadrature squeezing character. In other words, compared to the sub-Poissonian

character, quadrature squeezing character of the single mode quantum optical states is less efficient

as far as the problem of optimal conversion of input NC into BS output entanglement is concerned.

It is interesting that this conclusion is independent of which non-Gaussian state is input at

the BS as long as it has the same lmin.

5.3 Entanglement Redistribution over a 1-Dimensional Lattice Using a

BS Setup

Let’s recall that when the output of the first BS is fed to a second BS, the state at the input

port of the second BS is given by, for example

ρ
(2)
in,1 = Tr2 [ρ(1)

out], (5.24)

where, ρ(1)
out is the two-mode state after the first BS and ρ(2)

in,1 is the reduced density operator

corresponding to the state input at one of the ports of the second BS. It is important to realize

that the event of putting a second BS at the output ports of the first BS, which is mathematically

equivalent to the operation of state reduction, necessarily destroys the entanglement of the two-

mode output state after the first BS.
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In this section, we look into the question of whether two-mode entanglement destroyed

at the output of the first BS due to putting two other BSs at the two output ports of the

first BS can be regenerated at another location. We give a basic scheme, using 50 : 50 BSs,

perfect mirrors and phase shifters, that, in fact, accomplishes this task. Thereafter, we em-

bed this basic scheme within an extended scheme that accomplishes the task of redistributing

the entanglement generated at the output of the first BS over N (= 1,2,3, ..) sites on a 1-

dimensional lattice.

5.3.1 Schematic of the BS Arrangement for Entanglement Redistribution

Let’s consider the setup where passive 50 : 50 BSs are placed at various sites of a 2-dimensional

square lattice with (N + 1)2 (N = 1,2,3, ..) sites (Fig. 5.3). Let’s label the lattice points by

(m,n), wherem and n are positive integers. We place BSs at all diagonal points (m,m) and all

boundary points (0,m) and (m,0) (m = 0,1,2,3, ..,N ). There is an exception, however. At the

extreme points (N,0) and (0,N ) we place perfect mirrors rather than BSs as depicted in Fig.

5.4 and Fig. 5.6 in the cases ofN = 1 andN = 2 respectively. All other lattice sites are empty.

Our general notation is as follows. The two-mode state at the output of the BS located at

Figure 5.3: Schematic of the BS arrangement for

distributing entanglement over 1-dimensional lat-

tice. The dotted boxes represent where entangle-

ment is regenerated. the small circles represent

empty sites.

(m,n) is denoted by ρ(m,n)
out . Let’s index

various objects corresponding to the

two ports of BS by x and y, the direc-

tions of propagation of the fields. In

our setup the frequency and the po-

larization of the fields do not change

and hence x and y effectively are the

mode indices. The states input at

the two ports of the BS located at the

site (m,n) are denoted by ρ
(m,n)
x and

ρ
(m,n)
y respectively. In general, ρ(m,n)

x

and ρ
(m,n)
y are derived from the out-

put state at the the connected sites. In

the case of boundary sites, we have

ρ
(m,0)
x = Try [ρ(m−1,0)

out ] ; ρ(m,0)
y = |0〉〈0|

ρ
(0,m)
y = Trx [ρ(0,m−1)

out ] ; ρ(0,m)
x = |0〉〈0|

(5.25)
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while the in the case of diagonal states we have

ρ
(m,m)
x = Try [ρ(0,m)

out ] ,

ρ
(m,m)
y = Trx [ρ(m,0)

out ] ; m = 1,2, ...,N− 1

and ρ
(N,N)
x = ρ

(0,N )
y , ρ

(N,N )
y = ρ

(N,0)
x . (5.26)

Here, "Trx" for example stands for trace over states of the field input along the x direction.

The initial BS at the left bottom corner, i.e. at the point denoted by (0,0), is fed with a

nonclassical state ρnc at one of the input ports while the other port is left with vacuum state.

Note that in our notation, ρ(0,0)
x = ρnc and ρ(0,0)

y = |0〉〈0|. In general, one of the ports of any

BS placed along the boundary is always in the vacuum state. Specifically, ρ(0,m)
x = |0〉〈0| and

ρ
(m,0)
y = |0〉〈0| (m = 1,2,3, ..,N ). From the discussion in the previous sections, it is clear that

the states ρ(1,0)
x and ρ(0,1)

y input to the BSs at (1,0) and (0,1) are nonclassical. Hence, these

BSs again produce two-mode entangled states at their output. In general, any of the BSs

located at the next stage after any given BS will act to destroy the entanglement generated

at the output of this BS. However, as we demonstrate below, with a clever arrangement of

BSs and other linear optical elements, it is possible to ensure that the entanglement after

the BSs at the diagonal points (1,1), (2,2), (3,3) and so on is not destroyed.

5.3.2 Regeneration of BS Output Entanglement at a Different Site

Let’s illustrate our scheme in the case of N = 1 as shown in the Fig. 5.4. The input states at

Figure 5.4: Schematic of the BS arrange-

ment for regenerating entanglement at a

different lattice site.

the BSs located at (1,0) and (0,1) sites are de-

noted by the density operators ρ(1,0)
x and ρ(0,1)

y

respectively. The unused ports of the BSs at

(1,0) and (0,1) are left in the vacuum state.

As we have remarked earlier, the entanglement

generated at the output of the BS at (0,0) is

destroyed if we place a BS at (1,0) or (0,1) as

shown in the Fig. 5.3. This is so, since, the in-

puts to the BS at (1,1) are, in fact, the reduced

density operators ρ(1,1)
x and ρ

(1,1)
y and the re-

duction operation destroys the entanglement.

Note that ρ(1,1)
x and ρ(1,1)

y are same as the ρ(1,0)
y and ρ(0,1)

x upto the phase factors contributed

by free propagation and the perfect mirrors at (1,0) and (0,1). In our geometry, these phase

factors are equal and hence are irrelevant. Further, the squeezing phase φx and φy corre-
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sponding to the Gaussian states ρ(1,0)
y and ρ

(0,1)
x are the same as that of the Gaussian state

input at the BS at (0,0).

Statement : If a passive 50 : 50 BS is fed with Gaussian state at both the input ports with

the squeezing characterized by the complex squeeze parameters ζx = r eiφx and ζy = r eiφy ,

then (Appendix E)

(a) output state is separable if φx = φy ,

(b) output state entanglement attains maximal value (dependent on the thermal parame-

ter n̄), if φx = φy + π.

The states input at the two ports of the BS at (1,1), viz. ρ(1,1)
x and ρ(1,1)

y , are characterized

by equal complex squeeze parameters. From the statement given above, ρ(1,1)
out will be separa-

ble, although both ρ(1,1)
x and ρ(1,1)

y are nonclassical. Hence, in order to make ρ(1,1)
out entangled,

we insert at one of the ports, an optical element (for example a quarter-wave plate (QWP))

that shifts the squeezing phase by π. As a result of this, ρ(1,1)
out attains maximal possible en-

tanglement. Note that such a phase shifter could have been inserted before any of the input

ports of the BS at (1,1) since what is relevant is only the relative phase of squeezing between

the states input at the two ports.

Thus, we have demonstrated that the basic scheme in Fig. 5.4 indeed regenerates entan-

glement at the site (1,1) even though it is destroyed at the site (0,0). However, the entan-

glement at (1,1) is less than what was generated originally at (0,0). This can be understood

from the following facts: (a) NC of a state is invariant under reflection from a perfect mirror

(free propagation and phase shift) as argued in Chap. 3 and (b) the total NC at the output of

the BS at (0,0), i.e., NC(ρ(1,0)
x ) + NC(ρ(0,1)

y ) = NC(ρ1,1)
y ) + NC(ρ1,1)

x ), is less than NC(ρnc), the

NC of the state input at the BS at (0,0), due to the conservation relation of Ge et. al. [104].

Hence, the NC of the states input to BS at (1,1) is less than the NC of states at BS at (0,0)

- consequently has less potential to generate entanglement. It is interesting to study quan-

titatively the dependence of the regenerated entanglement at (1,1) on the NC of the state

input to the BS at (0,0) or equivalently 1/lmin, lmin being the minimum eigenvalue of σ , the

variance matrix of ρnc.

We compute the entanglement of formation (EOF) (Eq. 5.11) of the entangled state at

(1,1). For comparison, we also evaluate for this state the logarithmic negativity (EN) [105]. A

straightforward but tedious calculation involving variance matrices of the relevant reduced
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Figure 5.5: Plot of EOF (solid

line) and EN (dashed line) vs
1
lmin

.

output states after each BS leads us to the analytical re-

sults

EOF(ρout
site1) =

1
4(1 + 2 lmin)

{
(3 + 2 lmin) ln (3 + 2 lmin)

− (1 − 2 lmin) ln (1 − 2 lmin)
}

− ln 8(1 + 2 lmin),

EN(ρout
site1) = − ln

1 + 2 lmin

2
. (5.27)

In Fig. 5.5 we have plotted the dependence of EOF

and EN given in Eq. (5.27) on the 1
lmin

. It is evident from

Fig. 5.5 that more the input state is nonclassical, more entanglement is regenerated at (1,1).

5.3.3 Spatial Redistribution of the BS Generated Entanglement

We shall now give an outline of how we can embed the basic scheme of Fig. 5.4 within

an extended scheme that will allow us to accomplish the task of redistribute entanglement

generated at the output of the BS at (0,0) over a 1-dimensional lattice of points (m,m) (m =

1,2,3, ..,N ).

Let’s for simplicity consider the N = 2 case as depicted in Fig. 5.6. The present scheme

is an extension of the basic scheme in Fig. 5.4 in the sense that while the entire reduced

Figure 5.6: Schematic of the BS arrange-

ment for redistributing entanglement at

two different lattice sites.

output states after the BS at (0,0) were directed

into the BS at (1,1), now, due to presence of BSs

(rather than perfect mirrors) at (1,0) and (0,1),

a part of this output is available for directing

into the BS at (2,2). Two points are worth not-

ing here. Firstly, the state at the output of

the BS at (2,2) is entangled because the inputs

are nonclassical, and we have also made sure

that the two input states are characterized by

different squeezing phases by putting a phase

shifter in the arm between (2,0) and (2,2). Sec-

ondly, the entanglement generated at the out-

put of the BS at (1,1) is not destroyed because there are no BSs placed at the output of the BS

at (1,1). Clearly, the entanglement at (1,1) is less than what it was in the basic scheme of Fig.

5.4 because some of it has been regenerated at (2,2). Thus, we have managed to redistribute

the entanglement at the output of the BS at (0,0) by regenerating it at two different sites,
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viz, (1,1) and (2,2).

The scheme of Fig. 5.6 can be further extended by considering a 2-dimensional lattice

with (N +1)2 sites, with an appropriate placement of BSs, perfect mirrors and phase shifters

as mentioned earlier (Fig. 5.3), and one can redistribute entanglement over a 1-dimensional

lattice with N lattice points (1,1), (2,2), ..., (N,N ).





Chapter 6
Thesis in a Nutshell: Conclusion and

Future Prospects

In this thesis we have analyzed various information theoretic aspects of a class of two-mode

non-Gaussian entangled states light, generated by a BS from input single mode nonclas-

sical non-Gaussian states. These input states generated under two distinct NC inducing

operations, namely photon addition/subtraction and quadrature squeezing, applied on the

vacuum state in different orders, could be seen as the states generated under multiple non-

classicality inducing operations (MNIO). The particular single mode states that we have

considered are photon added squeezed vacuum state (PAS), photon subtracted squeezed

vacuum state (PSS) and squeezed number state (SNS).

We have brought out some interesting nonclassical features of these states in terms of the

presence and/or absence of sub-Poissonian and squeezing character, in different parameter

regimes. The BS output entanglement in the case of SNS as input is found to be a mono-

tonic function of the input NC as measured by the input state parameters, viz., number of

photon addition (m) and the squeeze parameter (r); however, in the case of input PAS, the

BS output entanglement has exhibited a non-monotonic dependence. We have attempted

to understand this counterintuitive result in terms of an effective NC measure of the states

SNS and PAS in terms of the existing measures. However, we have found that the results

obtained with the existing measures do not corroborate the BS entanglement curves. We

have qualitatively explained this non-monotonic behavior in terms of the mutual competi-

tion between the NC-inducing operations, i.e., photon addition and quadrature squeezing,

as manifest in the contours of the associated Husimi-Kano Q distributions.

To explain the non-monotonicity in the BS generated entanglement with input PAS we
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have further proposed a new Wehrl entropy based measure of NC for the single mode pure

states. We have demonstrated that the newly proposed measure reproduces the curves of

NC for the input states PAS and SNS, consistent with the corresponding entanglement. We

have also shown that our measure is a monotonically increasing function of a well-known

measure known as the nonclassical depth, in the case of Gaussian pure states.

We have further studied quantitative and qualitative aspects of QT, using the BK protocol

with the BS generated entangled non-Gaussian resources with input MNIO class of states.

The primary objective of our study has been to identify what are, besides entanglement, the

necessary and/or sufficient conditions on the two-mode entangled states to achieve QT. We

have observes that while squeezed vacuum affinity (SVA) is not a genuine attribute of the

two-mode entangled resource states, as it is identically zero for a large subclass of the BS

generated states, EPR correlation is found not to be sufficient for QT. In conjunction with

the earlier results where the EPR correlation has been found not to be always necessary for

QT, our work leads us to the conclusion that EPR correlation is neither necessary nor suffi-

cient for QT, in general. We then have investigated the question of whether U (2)-invariant

two-mode squeezing could be relevant for QT. Our numerical results on the BS entangled

resource states as well as the de-Gaussified TMSV indicate that U (2)-invariant squeezing

appears to be necessary for QT, but not sufficient. In view of the numerical results we pro-

pose that U (2)-invariant squeezing could be a necessary criterion for QT.

Finally, we have revisited the question of the extent to which input NC is converted into

BS output entanglement that was studied earlier by Ge et. al. [104]. Our results obtained

with a different measure of entanglement, corroborate the conservation law relating input

NC, output NC and BS output entanglement. We have further looked into the question of

conversion of input NC into BS output entanglement in the non-Gaussian case by focussing

on two particular aspects of NC, viz., sub-Poissonian and quadrature squeezing character.

We have shown analytically that, compared to the squeezing character, sub-Poissonian char-

acter is used up by the BS to greater extent for generating entanglement. We have also

addressed the question of regenerating and redistributing the BS entanglement at some dif-

ferent locations. In this regard we have proposed a scheme, using BSs and other linear

optical elements such as phase shifter and perfect mirrors, that accomplishes the task of

redistributing the BS generated entanglement at different sites on a 1-dimensional lattice.

Lastly, there exists a well known analogy between two-mode quantum states of light and

classical paraxial beams [106]. The paraxial beams propagate in the z direction while x and

y are the coordinates in the transverse plane. Analogous to the electric field of the beam
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projected along the transverse plane E (x,y) is the wave function associated with the two-

mode quantum state of light ψ(X,Y ) [107]. Note that X and Y here refer to the quadrature

variables, X = 1√
2
(a + a†) and Y = 1√

2
(b + b†). A lot of work has been around in the

literature exploiting the above-mentioned analogy and several interesting results have been

reported in respect of vortices [108, 109], non-quantum entanglement [110], violation of

Bell inequalities [111] etc.

From our perspective it is desirable to look into the connection between NG and vorticity

(clearly Gaussian beams do not support vortex), both quantitatively as well as qualitatively

using an adaptation of the NG measure for quantum states given by Ivan et. al. [67] to

paraxial beams.
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Appendices

A R(z,η) for PAS and SNS

Introducing the expression of P (γ) in terms of density operator ρ, the η convoluted function

R(z,η) can be written in terms of ρ as,

R(z,η) =
e
|z|2
1−η

1− η

∫
d2β

π
〈−β|ρ|β〉e−

(2η−1)|β|2+(z∗β−zβ∗)
1−η . (A.1)

For PAS, we have 〈β|ψPAS〉 = β∗m√
µNm

e−
|β|2

2 + τ
2β

2
. Thus, the R(z,η) for PAS becomes,

R(z,η)PAS =
e
|z|2
1−η

1− η

∫
d2β

π
〈−β|ψPAS〉〈ψPAS|β〉 exp

(
−

(2η − 1)|β|2 + (z∗β − zβ∗)
1− η

)
=

e
|z|2
1−η

µNm(1− η)

∫
d2β

π
(−|β|2m) exp

(
−
η|β|2

1− η
+
τ(β2 + β∗2)

2
+
zβ∗ − z∗β

1− η

)
(A.2)

One can derive the above non-Gaussian integral using parametric differentiation as,

R(z,η)PASVS =
(−1)m

µNm(1− η)
e
|z|2
1−η∂ma ∂

m
b

[
exp

(
−

η

1− η
|β|2 +

τ
2

(β2 + β∗2)− z∗

1− η
β +

z
1− η

β∗
)

exp
(
aβ + bβ∗

)]
a=0,b=0

=
(−1)m

µNm(1− η)
e
|z|2
1−η∂ma ∂

m
b

[∫ d2β

π
exp

(
−

η

1− η
|β|2 +

τ
2

(β2 + β∗2)
)

exp
(
(a− z∗

1− η
)β + (b+

z
1− η

)β∗
)]
a=0,b=0

(A.3)

For any Gaussian integral, we know that

∫
d2z
π
eζ|z|

2+ξz+ηz∗+f z2+gz∗2 =
e
−ζξη+f η2+gξ2

ζ2−4f g√
ζ2 − 4f g

. (A.4)

provided ζ2 − 4f g > 0. Using formula (A.4), for R(z,η)PAS, we get,

R(z,η)PAS =
Am1 e

|z|2
1−η

µNm
√
η2 − τ2(1− η)2

W0(z,z∗,η)∂ma ∂
m
b

[
eA1a

2+B1a−B∗1+D1ab+A1b
2
]
a=0,b=0

=
Am1 e

|z|2
1−η

µNm
√
η2 − τ2(1− η)2

W0(z,z∗,η)
m∑
k=0

(−1)m
m!

k!(m− k)!

(D1

A1

)k
Lm−k

( |B1|2

4A1

)
. (A.5)

where,

W0(z,z∗,η) = exp
(
−

η
1−η |z|

2 − τ2 (z2 + z∗2)

η2 − τ2(1− η)2

)
, A1 =

τ(1− η)2

2[η2 − τ2(1− η)2]

B1 =
ηz − τ(1− η)z∗

η2 − τ2(1− η)2 , D1 =
η(1− η)

η2 − τ2(1− η)2 . (A.6)
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Similarly, using the technique of parametric differentiation, one can easily derive R(z,η)

for an SNS. Since 〈β|ψSNS〉 = e−
|β|2

2 + τ2 β
∗2

√
µm!

∂ma

[
e−

τ
2a

2+ β∗
µ a

]
a=0

, we have

R(z,η)SNS =
1

1− η
e
|z|2
1−η

∫
d2β

π
〈−β|ψSNS〉〈ψSNS|β〉 exp

(
−

(2η − 1)|β|2 + (z∗β − zβ∗)
1− η

)
=

e
|z|2
1−η

µm!(1− η)
∂ma ∂

m
b

{
exp

(
− τ

2
(a2 + b2)

)
∫
d2β

π
exp

[
−

η

1− η
|β|2 + (

b
µ
− z∗

1− η
)β − (

a
µ
− z

1− η
)β∗ +

τ
2

(β2 + β∗2)
]}
a=0,b=0

=
Am2 e

|z|2
1−η

µ
√
η2 − τ2(1− η)2

W0(z,z∗,η)∂ma ∂
m
b

[
eA2a

2+B2a+B∗2−D2ab+A2b
2
]
a=0,b=0

=
Am2 e

|z|2
1−η

µ
√
η2 − τ2(1− η)2

W0(z,z∗,η)
m∑
k=0

(−1)m−k
m!

k!(m− k)!

(D2

A2

)k
Lm−k

( |B2|2

4A2

)
. (A.7)

where,

W0(z,z∗,η) = exp
(
−

η
1−η |z|

2 − τ2 (z2 + z∗2)

η2 − τ2(1− η)2

)
, A2 =

A1

µ2 −
τ
2
, B2 =

B1

µ
, D2 =

D1

µ2 (A.8)

B W (z,z∗) for PAS and SNS

Here, using the technique discussed in appendix A, we calculate the Wigner function for

PAS and SNS. The Wigner distribution for any density operator is given as,

W (z,z∗) = 2e2|z|2
∫
d2β

π
〈−β|ρ|β〉e2(zβ∗−z∗β). (B.1)

Thus, the Wigner distributions for PAS and SNS are given as

WPAS(α,α∗) = 2e2|α|2
∫
d2β

π
〈−β|ψPAS〉 〈ψPAS|β〉exp

(
2(αβ∗ −α∗β)

)
=

2e2|α|2

Nmµ

∫
d2β

π
e−|β|

2+2(αβ∗−α∗β)∂mp

[∫ d2γ

π
e−|γ |

2−β∗γ+pγ∗+ τ
2γ
∗2
]
p=0

∂mq

[∫ d2η

π
e−|η|

2+qη+βη∗+ τ
2η

]
q=0

=
2e2|α|2

Nmµ
∂mp ∂

m
q

[ 1
√

1− τ2
e

1
1−τ2

(
−(p−2α)(q−2α∗)+ τ

2 (p−2α)2+(q−2α∗)2

)]
p=0,q=0

=
2e2[(µ2+ν2)|α|2−µν(α2+α∗2)]

Nm
∂mp ∂

m
q

[
e
µν
2 (p2+q2)−µ2pq+2µq(µα−να∗)+p(µα∗−να)

]
p=0,q=0

=
2(−1)mm!e−2|ᾱ|2µmνm

2mNm
Σmk=0

m!(τ2 )−k

k!(m− k)!
Lm−k

(2|ᾱ|2

τ

)
. (B.2)
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and

WSNS(α,α∗) = 2e2|α|2
∫
d2β

π
〈−β|ψSNS〉〈ψSNS|β〉e2(αβ∗−α∗β)

=
2e2|α|2

m!µ
∂mp ∂

m
q

[
e−

τ
2 (p2+q2)

∫
d2β

π
e−|β|

2+( qµ−2α∗)β−( pµ−2α)β∗+ τ
2 (β2+β∗2)

]
p=0,q=0

=
2e2[(µ2+ν2)|α|2−µν(α2+α∗2)]

m!
∂mp ∂

m
q

[
e−pq+2q(µα−να∗)+2p(µα∗−να)

]
p=0,q=0

= 2(−1)me−2|ᾱ|2Lm(4|ᾱ|2), (B.3)

where µ = cosh r,ν = sinh r, ᾱ = µα − να∗. Evidently, for η = 1
2 , Eqs. (A.5) and (A.7) coincide

with Eqs. (B.2) and (B.3) respectively, since for η = 1
2 , R(z,η) coincides with the Wigner

function, W (z,z∗).

C U (2) Squeezing for BS Output State for Single Mode Gaussian Input

State

Let’s consider the column vectorsRin andRout for the input and output quadrature operators

as

Rin =



xain

pain

xbin

pbin


, Rout =



xaout

paout

xbout

pbout


. (C.1)

The quadrature operators {xain,p
a
in} corresponding to annihilation and creation operators

ain, a
†
in are defined as xain = 1√

2
(ain + a†in) and and pain = 1

i
√

2
(ain − a†in). Other related operators

are defined in the same way.

Using the transformation matrix between input and output mode operators Eq. (??) for

a 50 : 50 BS, it is easy to show that Rout is related to Rin by the transformation, Rout = SRin,

i.e., 

xaout

paout

xbout

pbout


=



1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 1√
2

0

0 − 1√
2

0 1√
2





xain

pain

xbin

pbin


. (C.2)

It is well known that, under the linear transformation S : Rin→ SRin, the input variance

matrix Vin transforms as S : Vin→ SVinS
T . Let’s consider that, a single mode Gaussian state

with variance matrix σ is fed to one of the input ports of a 50 : 50 BS while the other input

port is left with vacuum. Since the total input state is a product state, variance matrix of the
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total input state will be in a block diagonal form as Vin =

σ 0

0 I
2

 . Using the transformation

S given in Eq. (C.2) we get the output variance matrix as,

Vout = SVinS
T =

1
2

 σ + I
2 −σ + I

2

−σ + I
2 σ + I

2

 , (C.3)

where I is the 2×2 identity matrix. For the sake of simplicity let’s consider a diagonal form of

the single mode variance matrix σ as σ = diag{ηa,ζa}. The U (2) squeezing of the matrix Vout

is defined in terms of its minimum eigenvalue. The eigenvalues of Vout could be obtained

solving the characteristic equation

det (Vout −λ I) = 0

⇒
{
(ηa +

1
2
− 2λ)2 − (ηa −

1
2

)2
}{

(ζa +
1
2
− 2λ)2 − (ζa −

1
2

)2
}

= 0

⇒ 4(ηa −λ)(ζa −λ)(1− 2λ)2 = 0

⇒ λ =
1
2
, ηa, ζa. (C.4)

As quite explicit from the Eq. (C.4), the least eigenvalue of Vout is given by λmin =

min[1/2,ηa,ζa]. As quite explicit from the expression of λmin, BS output variance matrix

represents squeezing (λmin <
1
2 ) only if either of ηa and ζa becomes smaller than 1

2 . To be

specific, let’s assume that ηa ≥ ζa. In this case the minimum eigenvalue will be given by

λmin = min[1/2,ζa]. This indicates that the BS output state will be quadrature squeezed

only if the input single mode state is quadrature squeezed.

It is noteworthy that in the derivation of the squeezing condition in Eq. (C.4) we have

used the input variance matrix σ to be of diagonal form, for the sake of simplicity. However,

this condition is not specific to the diagonal form of σ only. By using a suitable symplec-

tic operation Sp(2,R) one can recast any single mode variance matrix in the diagonal form

as we have considered for σ . Since, the eigen spectrum doesn’t change under symplectic

transformations, the squeezing criterion remains invariant under such symplectic transfor-

mations [56].

D Mandel Q parameter for BS Output Reduced State

Mandel Q parameter for any state is defined as

Q =
〈N 2〉 − 〈N 〉2

〈N 〉
− 1, (D.1)
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where, N = a†a is the number operator. Let’s consider a single mode quantum optical state

ρ =
∑∞
k,l=0 Ck,l |k〉〈l|, where,

∑∞
k=0 |Ck,k |2 = 1. The quantities 〈N 2〉 and 〈N 〉 are defined as

〈N 2〉 =
∞∑
k=0

|Ck,k |2 k2 & 〈N 〉 =
∞∑
k=0

|Ck,k |2 k. (D.2)

It is well known that the BS output state, with ρ as input to one of the input ports while

other port is left with vacuum, is given by [17]

ρout =
∞∑

k,l=0

k∑
p=0

l∑
q=0

Ck,l C
p
k (Cql )∗ |k − p

〉〈
l − q| ⊗ |p

〉〈
q| , (D.3)

where,
∑k
p=0 |C

p
k |

2 =
∑l
q=0 |C

q
l |

2 = 1. The reduced state, obtained by taking partial trace of

ρout over any of the modes, is given by

ρred
out =

∞∑
k,l=0

min (k,l)∑
p=0

Ck,l C
p
k (Cpl )∗ |k − p

〉〈
l − p| . (D.4)

The quantities 〈N 2〉 and 〈N 〉 for ρred
out are given as

〈N 〉red
out =

∞∑
k,l=0

min (k,l)∑
p=0

Ck,l C
p
k (Cpl )∗

〈
l − p|N |k − p

〉
=

∞∑
k,l=0

min (k,l)∑
p=0

Ck,l C
p
k (Cpl )∗ (k − p) δk,l

=
∞∑
k=0

Ck,k
{
k

k∑
p=0

|Cpk |
2 +

k∑
p=0

|Cpk |
2 p

}
=
∞∑
k=0

Ck,k
k
2

=
〈N 〉

2
& (D.5a)

〈N 2〉red
out =

∞∑
k,l=0

min (k,l)∑
p=0

Ck,l C
p
k (Cpl )∗

〈
l − p|N 2 |k − p

〉
=

∞∑
k,l=0

min (k,l)∑
p=0

Ck,l C
p
k (Cpl )∗ (k − p)2 δk,l

=
∞∑
k=0

Ck,k
{
k2

k∑
p=0

|Cpk |
2 − 2k

k∑
p=0

|Cpk |
2 p +

k∑
p=0

|Cpk |
2 p2

}
=
∞∑
k=0

Ck,k
k2 + k

2
=
〈N 2〉 + 〈N 〉

4
. (D.5b)

Putting the expressions of 〈N 〉red
out and 〈N 2〉red

out in the definition of Q parameter (Eq. D.1)
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we get

Qred
out =

〈N 2〉red
out − 〈N 〉red

out

〈N 〉red
out

− 1

=
〈N2〉 + 〈N 〉

4 − 〈N 〉
2

4
〈N 〉

2

− 1

=
1
2

{〈N 2〉 − 〈N 〉2

〈N 〉
+ 1

}
− 1 =

1
2

(Q+ 1 + 1) − 1 =
Q
2
. (D.6)

E On the Condition of Inseparability for the BS Output Gaussian State

with Identical Gaussian Input State at both Input Ports

Let’s consider a single mode nonclassical Gaussian state ρG
nc as a squeezed thermal state

ρSTS = S(ζ) ρth(n̄) S†(ζ), where, S(ζ) = e
ζ a†2 − ζ∗ a2

2 and ζ = r eiφ. The NC of ρSTS is ensured

by the fact r > 1
2 ln [2n̄ + 1]. For the sake of simplicity, one can neglect the rigid phase space

displacement in the expression of a general single mode Gaussian state given by Chaturvedi

and Srinivasan [54]. Let’s consider a passive 50 : 50 BS with both of input ports are fed

with the squeezed thermal states ρSTS with same r and n̄ but different phase/direction of

squeezing, say, φa and φb, where, a and b denote two-input spatial modes. Then the total

input state is given by

ρin = Sa(ζ) ρth(n̄) S†a (ζ) ⊗ Sb(ζ) ρth(n̄) S†b (ζ), (E.1)

where, Sa corresponds to φa and Sb corresponds to φb. With the input state given in Eq.

(E.1), the BS output state is given by

ρout = U†BS ρin UBS

= {U†BS Sa(ζ) Sb(ζ) UBS} {U†BS ρth(n̄) ⊗ ρth(n̄) UBS} {U†BS S
†
a (ζ) S†b (ζ) UBS}, (E.2)

where, UBS is the BS transformation on the mode annihilation operators a and b.

Since, to yield inseparability/entanglement at the output of a passive BS, atleast one

of the input states must be nonclassical [13, 16], it is quite straightforward to infer that

under the BS transformation input thermal state product still remains as the product of two

thermal states, i.e.,U†BS ρth(n̄) ⊗ ρth(n̄)UBS = ρth(n̄) ⊗ ρth(n̄). Hence, the only part that might

give rise to entanglement in Eq. (E.2) is the BS evolved operator, i.e., U†BS Sa(ζ) Sb(ζ) UBS.

A 50 : 50 BS can be modeled by the transformation UBS = e
i√
2

(a†a − b†b)
that makes the

transformation on the mode annihilation operators given in Eq. 2.1. Using the BS transfor-
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mation on the mode operators, a and b, it is quite straightforward to check that

U†BS Sa(ζ) Sb(ζ) UBS = exp
r
2

[
a†2

(eiφa + eiφb

2

)
− a2

(e−iφa + e−iφb

2

)
+ b†2

(eiφa + eiφb

2

)
− b2

(e−iφa + e−iφb

2

)
+ 2r(a†b†

(eiφa − eiφb
2

)
− ab

(e−iφa − e−iφb
2

)
)
]
. (E.3)

As is evident from Eq. (E.3), with the setting φa = φb = φ, while the first two terms

within the bracket survives, the last term vanishes. This leads to the result

U†BS Sa(ζ) Sb(ζ) UBS = e
r
2

[
(a†2eiφ − a2e−iφ) + (b†2eiφ − b2e−iφ)

]
= Sa(ζ) Sb(ζ), (E.4)

that in turn reduces Eq. (E.2) to

ρout

∣∣∣
φa = φb

= Sa(ζ) ρth(n̄) S†a (ζ) ⊗ Sb(ζ) ρth(n̄) S†b (ζ), (E.5)

i.e., a separable state. On the other hand, with φa = φb + π = φ, the first two terms within

bracket in Eq. (E.3) vanishes while the last term reduces to r (eiφ a†b† − e−iφ ab). As a

consequence, with φa = φb + π, Eq. (E.2) reduces to

ρout

∣∣∣
φa = φb + π

= Sab(ζ) ρth(n̄) ⊗ ρth(n̄) S†ab(ζ), (E.6)

i.e., an inseparable or entangled state. It is also noteworthy that with φa = φb + π, one

obtains a maximally entangled state in Eq. (E.6) depending upon the thermal parameter n̄.
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